
FP6-004381-MACS

MACS

Multi-sensory Autonomous Cognitive Systems Interacting with Dynamic
Environments for Perceiving and Using Affordances

Instrument: Specifically Targeted Research Project (STReP)

Thematic Priority: 2.3.2.4 Cognitive Systems

D4.4.1 A software prototype for an affordance monitoring module with
empirical testing using various MACS robotics platforms – The Event

and Execution Monitor Module (EEM)

Due date of deliverable: November 30, 2006
Actual submission date: October 19, 2006

shtnom63:noitaruD4002,1rebmetpeS:tcejorpfoetadtratS

Linköpings Universitet (LiU-IDA)

Revision: Version 2

Project co-funded by the European Commission within the Sixth Framework Programme (2002–2006)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

X

CO Confidential, only for members of the consortium (including the Commission Services)

EU Project

Deliverable D4.4.1

A software prototype for an
affordance monitoring module
with empirical testing using var-
ious MACS robotics platforms –
The Event and Execution Mon-
itor Module (EEM)

Fredrik Heintz, Patrick Doherty, Björn Wingman, Piotr Rudol,
Mariusz Wzorek

Number: MACS/4/4.1
WP: 4.4

Status: draft, version 2
Created at: October 1, 2006
Revised at:

Internal rev: v2 – October 19, 2006

FhG/AIS Fraunhofer Institut für Intelligente Analyse-
und Informationssysteme, Sankt Augustin, D

JR DIB Joanneum Research Graz, A
LiU-IDA Linköpings Universitet, Linköping, S
METU-KOVAN Middle East Technical University, Ankara, T
OFAI Österreichische Studiengesellschaft für Kybernetik,

Vienna, A

This research was partly funded by the European Commission’s 6th Framework
Programme IST Project MACS under contract/grant number FP6-004381. The
Commission’s support is gratefully acknowledged.

c© LiU-IDA 2006

Corresponding author’s address:

Prof. Dr. Patrick Doherty
Linköpings Universitet
Dept. of Computer and Info. Science
Linköping 581 83, Sweden

Fraunhofer Institut für Intelligente Tel.: +49 (0) 2241 14-2683
Analyse- und Informationssysteme (Co-ordinator)
Schloss Birlinghoven
D-53754 Sankt Augustin Contact:
Germany Dr.-Ing. Erich Rome

Joanneum Research Tel.: +43 (0) 316 876-1769
Institute of Digital Image Processing
Computational Perception (CAPE)
Steyrergasse 9
A-8010 Graz Contact:
Austria Dr. Lucas Paletta

Linköpings Universitet Tel.: +46 13 24 26 28
Dept. of Computer and Info. Science
Linköping 581 83 Contact:
Sweden Prof. Dr. Patrick Doherty

Middle East Technical University Tel.: +90 312 210 5539
Dept. of Computer Engineering
Inonu Bulvari
TR-06531 Ankara Contact:
Turkey Asst. Prof. Dr. Erol Şahin

Österreichische Studiengesellschaft Tel.: +43 1 5336112 0
für Kybernetik (ÖSGK)
Freyung 6
A-1010 Vienna Contact:
Austria Prof. Dr. Georg Dorffner

Contents

I Background 1

1 Introduction 2

2 The Event and Execution Monitor 3
2.1 Overview . 3

3 DyKnow 4
3.1 Introduction . 4
3.2 Execution Monitoring . 4

3.2.1 Execution Monitoring With MITL . 6
3.2.2 Evaluating MITL Formulas Using Progression 7

3.3 Chronicle Recognition . 9

4 Implementing the EEM Using DyKnow 11
4.1 Implementing Execution monitoring . 11
4.2 Implementing Event monitoring . 13

II Tutorial 14

5 Introduction 15

6 Getting Started 16
6.1 Installing the EEM . 16
6.2 Running the EEM . 16
6.3 Retrieving the EEM . 16

7 Setting up the Scenario 18
7.1 Creating the Entity Structure Types . 18
7.2 Creating the Computational Units . 19

7.2.1 Computing the Deviation From the Desired Driving Direction 19
7.2.2 Computing the Qualitative Deviation From the Desired Driving Direction 19

7.3 Creating the Entity Trajectory Structures . 19

8 Monitoring the Object Following Behavior 20
8.1 Implementing the Object Following Behavior 20
8.2 Adding the Global Monitor . 21

i

8.3 Adding and Removing the Local Monitor . 22

9 Detecting a Zig-Zag Behavior 25
9.1 Compiling the Chronicle . 26
9.2 Start Recognizing the Chronicle . 27
9.3 Stop Recognizing the Chronicle . 27

III Appendices 29

A The EEM Interfaces 30
A.1 eem.idl . 30
A.2 eem callbacks.idl . 32

B The Tutorial Source Code 33
B.1 eem tutorial.cc . 33
B.2 EemTutorialState . 45
B.3 QualitativeDeviationWrapper . 51
B.4 DrivingDirectionDeviationCU . 54
B.5 QualitativeDeviationCU . 57
B.6 EemEmCallback . 60
B.7 EemEventCallback . 62
B.8 ZigZag Chronicle . 64

C Bibliography 65

ii

Part I

Background

1

Chapter 1

Introduction

This document describes the event and execution monitor (EEM) of the affordance-based robot
control architecture developed in the MACS project as described in the “Development of an
Affordance-based Control Architecture” [9]. The EEM is implemented using a knowledge pro-
cessing middleware called DyKnow which has been developed in order to facilitate the creation
and management of knowledge in a distributed real-time system.

The document is structured as follows. This first part describes the EEM, formula progression
and chronicle recognition using DyKnow, and how the EEM is implemented by DyKnow. The
second part is a step-by-step tutorial on how to use the EEM to implement a small application for
finding and examining objects.

2

Chapter 2

The Event and Execution Monitor

2.1 Overview

The purpose of the event and execution monitor (EEM) module is to recognize the occurrence of
events and to monitor the execution of actions and behaviors. Conceptually the EEM is part of the
execution component in the architecture, but it may be used by any of the components to recognize
event occurrences as required by other modules.

For example, for the constraints associated with a cue or outcome descriptor to be satisfied, a
cue event or an outcome event must be recognized. This is the type of functionality provided by
the EEM. To do this the EEM should receive an event occurrence request. Based on the request it
should call the entity structure generation module (ESGM) with a policy to extract a state sequence
of the appropriate set of attributes associated with the the cue or outcome to be used to verify the
occurrence or non-occurrence of the event within a specified temporal duration. An event type is
represented as a simple temporal network [8] where the nodes represent time-points of changes in
attribute values. To recognize an event instance is to find a set of time-points where such value
changes occur and where the set of time-points satisfy the temporal constraints of the network.
Each such event occurrence recognized should be reported back to the original caller. According
to the specification [9] it should also be possible to detect non-occurrence of events, but this
is currently not supported by the EEM. The reason is that it is unclear what it would mean to
recognize a non-occurrence of an event type over a possibly infinite state sequence. A possible
interpretation that could be implemented is that no occurrences started in a particular interval
and/or ended in a particular interval could be found.

The other task of the EEM is to monitor the execution of actions and behavior instances. This
is done in order to determine whether a behavior or action instance is successful or not. To start
this monitoring the EEM should receive an execution monitoring request. Based on the request it
should call the ESGM with a policy to extract a state sequence of the appropriate set of attributes
associated with the request, just like in the case with the event occurrence request. An execution
monitoring request is expressed as one or more metric interval temporal logic (MITL) formulas [2].
When a formula is evaluated to true or false this should be reported back to the original caller.

3

Chapter 3

DyKnow

3.1 Introduction

The main purpose of DyKnow is to provide generic and well-structured software support for the
processes involved in generating state, object, and event abstractions about the environments of
complex systems. Generation of state, object, and event representations is done at many levels of
abstraction beginning with low level quantitative sensor data and often resulting in qualitative data
structures which are grounded in the world and can be interpreted as knowledge by the system.
To produce these structures the system has to support operations on data and event streams at
many different levels of abstraction. For the result to be useful, the processing must be done in
a timely manner so that the robotic agent can react in time to changes in the environment. The
resulting structures are used by various functionalities in a deliberative/reactive architecture for
control, situation awareness and assessment, monitoring, and planning to achieve mission goals.
DyKnow provides a declarative language for specifying these structures needed by the different
components of the agent. Based on this specification it creates representations of the external
world and the internal state of an agent based on observations and a priori knowledge, such as
facts stored in databases, with the desired properties and quality of service guarantees. DyKnow
also allows easy integration of existing sensors, databases, reasoning engines and other knowledge
producing services.

The motivation for the work is to provide an agent with the necessary knowledge to make deci-
sions and act. This is why we call it knowledge processing middleware instead of e.g. information
processing middleware. Since the purpose is acting the processing time is an important part of the
knowledge process. It is not sufficient to produce the best possible estimate of the position of the
agent if it takes an hour to do it. Neither is it sufficient to produce a fast and dirty estimation of the
position if it is not accurate enough to be useful for the agent. The two conditions are necessary,
but not sufficient on their own. An important problem is to provide tools to help the agent designer
describe and make the trade-offs between efficiency and accuracy.

3.2 Execution Monitoring

An agent acting in a dynamic and uncertain environment will sooner or later experience unantic-
ipated or exceptional events leading to unintended failures. Therefore the agent needs to detect
and handle these exceptional situations in order to perform robustly in a noisy environment. One
approach to the problem is to make each action handle all possible circumstances, which leads to

4

CHAPTER 3. DYKNOW 5

very complex actions and duplication of functionalities. Therefore, execution monitoring has been
suggested in order to separate the acting from the monitoring of exceptions and the recovery from
these unintentional situations [5; 7; 10; 11; 13; 18].

One motivation for separating the monitoring from the execution is to increase the separation
of concerns and the modularity. For example, assume we have a UAV which should fly a box to
a destination using a trajectory following behavior. To make sure that the box is not dropped the
UAV will monitor that it has not dropped the box. This means the action being executed is flying
along a trajectory, but the condition that is being monitored is that a box attached to the UAV is not
dropped. We could add checks in the trajectory following action to handle the situation where the
box is dropped, but this has nothing to do with flying along a trajectory. Instead we separate the
concerns and monitor the behavior of the UAV with another component, the execution monitor.
This separation makes it much easier to monitor conditions that are not part of the action itself
but should be invariant during the action, such as not dropping a box while flying. By making
the monitor external to the action we can also monitor scenarios where the UAV is not only flying
along a trajectory but is also doing other actions along the path to the destination of the box, such
as taking photographs of buildings, without changing the monitoring condition. The separation
is even necessary if we want to monitor the execution of the implementation of the action in the
software system, for example to check that the action does not get stuck in an infinite loop or
crashes.

One approach to execution monitoring is to use a model to derive the expected behavior of
an agent and then compare this expected behavior with the output from the sensors [5; 13]. For
example, Gat et al [13] takes the output from their path planner and simulates the expected sensor
outputs using a simulator. From these expectations an interval within which the sensor readings
are expected to be is derived for each time-point. While following the generated path the robot
will check that the sensor readings are within the expected interval. If a discrepancy is detected
the robot switches to a recovery mode which tries to handle the unintended situation.

Another approach is to focus on the unexpected situations instead of the expected behavior.
The idea is to monitor as many exceptional cases as possible. This can for example be done using
hierarchical monitors [10], where the top monitors are very general and the leaf monitors are very
specific. The top monitors cover many cases, but usually detect the exception with a large delay
and do not give very much information about the cause of the exception to aid the recovery. For
example, a monitor to check that the action has taken longer than the expected maximum execution
time is a top level monitor in Fernandez et al [10]. It will cover very many cases, but it will not
trigger until the maximum execution time has passed, which can be a long time. The leaf monitors
on the other hand are usually very specific, covering few cases but will detect these exceptions
fast and provide detailed information about the possible causes to the recovery mechanism. An
example of a leaf monitor, also from Fernandez et al [10], is the spinning in place monitor that
checks that the robot is not spinning around indefinitely. If this monitor is triggered then the robot
knows exactly what exception has occurred and what recovery action to perform.

A third approach is to use a logic of action and change to model the effects of actions and
represent potential failures by abnormality predicates in the effects [11]. These abnormality predi-
cates are false by default, but if the execution of an action fails then the controller can hypothesize
that one or more of the abnormality predicates are true. Taking this new information into account
the controller can derive a new plan to handle the exceptional situation.

The approach we have based our work on is by Lamine and Kabanza [18]. They use ideas from
model checking where desired properties of the system are expressed in a logical formalism and

CHAPTER 3. DYKNOW 6

checked against models of the system [6]. But, instead of checking the properties against a model
of the system they check the properties against the execution trace of the robot. Two categories of
properties are usually discerned, those properties that are never allowed to be violated, called safety
properties, and those properties that are required to be true indefinitely, called liveness properties.
Since only the finite execution trace up to the current time point is checked it is not possible to
check liveness properties, which are only defined on infinite traces, using this approach.

Like Lamine and Kabanza [18] we use a declarative formalism, a linear temporal logic, to
express the properties to be monitored. Since the monitors are expressed in a declarative language
we can reason about the monitors, as well as allow the agent itself to reason about its needs and
derive the appropriate formulas. The development of new monitors is also simplified since no
programming is needed, instead the user express the desired condition in the declarative language.
Since there is no need to recompile anything the formulas can be added dynamically at run-time.

Compared to the other approaches we use a combination of ideas from the first two approaches.
We do not do any explicit prediction, but at the same time the formulas express expected future
behavior. Instead of making one prediction, we express a set of legal future states which are
those states we predict are not going to make the execution fail. Therefore the negation of these
formulas could be seen as expressing unexpected situations which we would like to detect in order
to manage them when they occur.

To summarize, execution monitoring is about detecting and recovering from exceptional situa-
tions while performing actions in a dynamic and uncertain environment. By separating the actions,
the monitoring conditions and the recovery actions and expressing the conditions using a declar-
ative formalism the agent can reason about the conditions and possibly decide at run-time what
monitors are needed for a specific situation as well as what recovery action is most appropriate.
Another benefit is that the same action and the same sensors can be used for many different mon-
itoring conditions, each specified by a declarative formula. A good monitoring condition is one
that detects a class of exceptions as soon as possible after it has occurred and provides enough
information about the exception in order for the agent to recover from the it.

3.2.1 Execution Monitoring With MITL

To describe the expected behavior we will use a linear temporal logical formalism called metric
interval temporal logic (MITL) [2]. The choice suits the application very well since we only check
the past, which is always linear. The fact that there exist efficient algorithms for evaluating MITL
formulas online, as explained in Section 3.2.2, is another reason. A MITL formula can express
that a condition F must hold either at all times, always F , or at some time, eventually F . It can
also express that a condition F must hold at all times up to the time when a condition G holds,
F untilG. The condition can either be an MITL formula or a first order predicate formula. It
is also possible to define temporal operators over specific intervals, such as always[i,j] F which
says that F must hold over the interval [i, j]. Since a formula is evaluated in a state the interval
is relative to the state, for example, if the timestamp of the current state is time-point 4 then the
formula always[3,5] f says that f should be true from time-point 7 to time-point 9. Similar logics
are commonly used in model checking to verify safety and liveness properties of formal models
of systems .

The safety constraint mentioned in the introduction, that if a box is attached and the UAV goes
into the trajectory following mode then the box must stay attached until the UAV is no longer in
the trajectory following mode, can be expressed in MITL as always(attached ∧ traj following →
attacheduntil¬traj following). The constraint will be violated if the UAV drops the box while

CHAPTER 3. DYKNOW 7

following a trajectory. Even though it is a quite simple condition to monitor, it is not something
that we can do only with a sensor since the condition only applies in certain modes of operation.
It is not enough that the UAV reacts every time the attachment sensor registers that a box has been
detached, it is only those detachments that occur while flying a trajectory that are interesting. It
is possible to achieve the same behavior by only using the sensor if it is only turned on when the
UAV is in the trajectory following mode or if the control mode is checked each time the sensor
goes from on to off. The drawback is that the UAV needs a controller for turning the sensor on and
off which could otherwise be passively turned on all the time. It will also restrict the use of the
sensor since it may only be used for this particular task. By using an execution monitor the sensor
can be used for many different monitoring tasks, each specified by a declarative formula.

Given that we have a MITL formula containing a number of variables the question is how to
create a state sequence representation of those variables using DyKnow so that the evaluation of
theMITL formula on the representation gives the correct result with respect to the world. When we
speak of “the world”, we are in fact referring to the world as it is perceived by the agent through its
sensors, i.e. we assume that the sensors produce a correct representation of the world. This means
that DyKnow does not reason about the relation between the data produced by the sensors and
the actual state of the world. However, DyKnow can support such reasoning carried out by other
systems at the agent’s disposal, by providing those systems with streams of data meeting specified
requirements. Instead, we are interested in describing the properties of the output from the sensors,
the desired properties of a representation and how to actually derive a representational structure
with those desired properties. If it is not possible to do this then it should be detected and reported
so the agent can handle the situation. The purpose of DyKnow is to create such representational
structures from the output of the sensors. Before we describe how this is done we will describe
the semantics of MITL and one method to evaluate MITL formulas.

The semantics of an MITL formula is defined on an infinite sequence of states where each
state is associated with a time interval and assigns a value to every variable in the formula. A
formula on the form always f is true over a state sequence s1, . . . iff f is true in each state si in
s1, Over the same state sequence a formula eventually f is true iff f is true in some state
si. The formula f until g is true iff there exists a state si in s1, . . . such that f is true in all states
before, but not including, si and g is true in si. A first order formula f is true in a state s iff the
interpretation of the variable in the state s entails f . If intervals are added to the temporal operators
then the intervals of the states must be considered as well. For example, a formula always[s, e]f
is true over a state sequence s1, . . . iff f is true in each state si in s1, . . . where the time interval
associated with si overlaps the interval [b, e]. The formula eventually[s, e]f is true over the same
state sequence it there exist at least one state si where f is true and where the interval associated
with si overlaps [s, e].

3.2.2 Evaluating MITL Formulas Using Progression

Since we want to detect violations of safety constraints as soon as possible we need a suitable
method to evaluate the MITL formulas. One such method is a technique called progression, which
evaluates a formula over a state sequence one state at the time. The technique is perfectly suited
for an execution monitoring application since we can progress the formula each time a new state
is available until the scenario is finished or the formula is progressed to either true or false.

Progression takes an MITL formula and the first state in a state sequence and returns a new
MITL formula, such that the result of evaluating the new formula on the rest of the state sequence
is the same as evaluating the original formula on the whole state sequence. A picture of the pro-

CHAPTER 3. DYKNOW 8

gression of an MITL formula F is shown in Figure 3.1. The progression can be applied recursively
to evaluate a formula over a state sequence by evaluating a single state at a time. If the formula
is progressed to either true or false no more progression is required since they are progressed
to themselves for all states. The progression algorithm we have used is taken from [17], which is
similar to the progression algorithm described in [3].

sns1 s2 s3 ...

F

F2 = progress(F1, s2)

F1 = progress(F, s1)

Figure 3.1: The evaluation of an MITL formula F over the state sequence s1, . . . , sn by progres-
sion. The result of progressing F over the first state s1, F1, is evaluated over the state sequence
s2, . . . , sn, by successive progression.

A drawback of using progression is that we only evaluate formulas on finite state sequences,
while the semantics of MITL is defined on infinite sequences. This means that we can not in-
fer that a system has typical liveness properties such as F holds infinitely many times during the
execution, expressed by always eventually F . But, by introducing intervals on the temporal op-
erators it is possible to verify limited liveness properties, such as at any time during the ten hour
execution of the system the condition F holds within 10 minutes, expressed by always[0,10hours]
eventually[0,10minutes] F .

In order to use MITL and progression to do execution monitoring we have to generate a state
sequence correctly representing the behavior of the UAV. To do this we have to process the in-
formation available from the sensors and produce a state sequence representation of the behavior.
There are two issues to consider. First, what properties are required of the state sequence in order
for the evaluation of the MITL formula to be correct with respect to the output from the sensors.
Second, how can we from the output of the sensors generate a state sequence which satisfies these
properties.

The first question is specific to progression of MITL formulas while the second question is
more general. The second question is really about how to generate a representation structure
with certain properties. In this case it is about taking the output from the sensors and deriving a
state sequence with certain properties. One purpose of DyKnow is to provide a language where
such representational structures can be specified declaratively. Such a specification is called a
policy. These policies are used by DyKnow to actually derive the representation, with the specified
properties. If the policy is violated this can be detected and reported in order for the agent to react
to the situation and handle it appropriately.

The general idea is to use a declarative policy to specify the properties of a representational
structure and to show that these properties are sufficient for the purpose of the representation. The
same specification also gives the implementation of DyKnow the possibility to detect deviations
from this specification. The actual instance of the representational structure is usually dependent
on some external source, such as a sensor. If the external source does not conform with its policy
then a policy violation will be detected and the agent can react to the event in whatever way
appropriate.

By using formulas that are triggered by many different state sequences, such as limiting the

CHAPTER 3. DYKNOW 9

allowed execution time of an action, it might be difficult to recover from the failure since not
enough information is available. For example, if the execution time monitor is triggered then the
only thing we know is that the execution took too long time, not what caused the stalling. If we
have historic information available about the behavior of the UAV, then a human operator or the
UAV itself could query the history by using MITL to express conditions on the behavior of the
UAV. Based on the answers a more detailed explanation to the condition of the UAV could be
obtained. In fact, this can be done using DyKnow since it is possible to specify the amount of
history to be cached for each fluent stream. As long as the content of the cache is enough, we
can easily create and evaluate MITL formulas ad-hoc on the history of the system to classify the
error. This is also another benefit of using a declarative language to specify the properties, since it
is easy to add new properties at run-time, without any need for recompilation.

3.3 Chronicle Recognition

In many applications it is of interest to describe and recognize complex events. One popular
formalism for defining complex events is temporal constraint networks (TCN) [8]. A TCN is an
acyclic directed graph where the nodes represent primitive events and the edges sets of disjunctive
temporal constraints on the occurrence of the primitive events. A TCN corresponds to a temporal
constraint satisfaction problem (TCSP) where a set of variables, one for each node, should be
assigned a time-point in such a way that the binary constraints defined by the edges are satisfied.
If it possible to find such an assignment then the TCN is consistent. To determine if a TCSP is
consistent, i.e. has at least one solution, is NP-complete [8]. But, if we restrict the problem to only
allow a single temporal constraint on each of the edges in the TCN then we get a simple temporal
constraint network whose corresponding simple TCSP can be solved in polynomial time [8].

One formalism which uses TCN as the basis for recognizing complex events is the IxTeT
chronicle recognition system. It is developed at LAAS in Toulouse, France, by Ghallab et al. [14].
Since it is based on TCN it is capable of representing constraints as before, equal, after and their
disjunctions as well as numerical constraints between time points, but not their disjunctions since
then the problem would become NP-complete. The numerical constraints are intervals [I−, I+]
corresponding to lower and upper bounds on the temporal distance between the time-points. A
benefit of the chronicle formalism is that given a stream of time-stamped primitive events it will
recognize all possible instances of a chronicle, i.e. TCN, over the event sequence. To do this IxTeT
keeps track of all possible developments (Ghallab calls this prediction) in an efficient manner. A
recognized chronicle can also be seen as an event in itself which can be used to create recursive
chronicles.

One application area for chronicle recognition is in the surveillance of dynamic systems. It
has for example been used with success to monitor gas turbines [1] and telecommunication net-
works [4].

Other similar approaches to IxTeT have been proposed. One example is Fontaine and Ra-
maux [12] who tries to match temporal constraint networks, instead of satisfying them, by con-
structing one graph for the chronicle being recognized and one for the actually observed events,
called the session, and trying to match them. An approach close to text pattern recognition tech-
niques using finite-state automaton whose transitions correspond to the observed events is pre-
sented by Lévy [19]. His approach is very efficient in recognizing sequential chronicles while
other structures impair the performance.

A related research area is plan recognition where you infer what plan an agent is executing by

CHAPTER 3. DYKNOW 10

observing the agents’ interactions with the world and by maintaining a model of the mental states
of the agents, which is a much more general concept than a chronicle or scenario [16]. According
to Pynadath and Wellman [20] the difference between general pattern recognition (to which you
can count chronicle recognition) and plan recognition is that plans are made by a rational agent
with a mental state which could be used to improve the matching. In chronicle recognition you
only take the actual events into account not why the agent causing the events did them. Another
difference is that plan recognition systems usually do not deal explicitly with time, instead they
focus on the plans and what actions or sub plans they are made of.

Chapter 4

Implementing the EEM Using DyKnow

The event and execution monitor is actually a wrapper around two modules which are part of
DyKnow, the formula progressor and the chronicle recognition engine (CRE). Depending on the
type of the request one of them will be called in order to perform the actual monitoring. The
monitoring of executions are done by the formula progressor while the event monitoring is done
by the chronicle recognition engine.

4.1 Implementing Execution monitoring

In order to use the MITL progression algorithm to implement an execution monitoring application
an appropriate state sequence must be generated for each formula. In this section we explain how
this can be done using DyKnow. First, we describe the properties required from the state sequence
to use it for progressing MITL formulas, then how such a state sequence can be extracted from the
data streams produced by the sensors using DyKnow.

To guarantee that the state sequence has certain properties, which are required for the MITL
progression, we have to assume that the output from the sensors has certain properties. To specify
these properties of the sensor streams and the desired properties of the state sequences we intro-
duce a declarative language. In the language these properties are specified by policies. Based on
a policy DyKnow can check that the actual output from the sensors satisfies the properties. If a
policy violation is detected it can be reported to the agent. The agent can react to this event and
take the appropriate actions. This is one benefit of using a declarative language. Another benefit is
that the user only has to specify what she wants, not how to compute it. We can reason about the
data streams produced on an abstract level and prove properties of it. The same specification can
be used by the implementation to make sure that the actual data streams satisfies the properties. If
they are satisfied then we know that the output has the proved properties, otherwise we are able to
detect the violation and can try to handle the situation anyway.

The policy, with the constraints, restricts the set of legal fluent streams. If a fluent stream is
produced by the sensors that does not satisfy these constraints then a policy violation will be de-
tected and reported. The agent will have to react to this event and take the appropriate actions. To
derive a state sequence from these fluent streams we first derive fluent generator representational
structures, i.e. total functions from time to value instead of partial functions as the fluent streams
are, from the fluent streams and then sample these representational structures with a regular inter-
val. Each sampling of the fluent generator representational structures will give a state in the state
sequence.

11

CHAPTER 4. IMPLEMENTING THE EEM USING DYKNOW 12

To derive a fluent generator representational structure from the fluent streamwe have to specify
how to approximate the value at those time-points where no sample exists in the fluent stream.
The reason is that a fluent stream only has samples at certain time-points while a fluent is a total
function from time to value. For example, if a fluent stream has values at time-points 0, 100, and
200, then what are the values at time-points 50, 113, and 222? The simplest way to approximate
the value is to assume that all changes in the value will have explicit samples and therefore a value
is valid until a sample with a higher valid time is added. This is called the most recent value
approximation and is part of the fluent generator policy.

To evaluate several formulas over the same state sequence they are collected into a context.
Each context consists of a set of formulas and a state sequence described by a policy. There are
two ways to define the variables that will be part of the state sequence of a context. Either they
can be explicitly specified when the context is created or they are extracted from the first formula
added to the context. In either case the variables in the state will never change during the lifetime
of the context. This means that if the implicit method for adding variables to the state is used then
the first formula must contain all the variables to be used for any formula in this context. Since
it’s easy to write a formula which is evaluated once and then removed this is not very restrictive,
but somewhat clumsy. When a context is created formulas can be added and removed. If someone
tries to add a formula which contains variables not in the state then an exception will be generated
to inform the user about the condition. From an optimization point of view it is important to have
as few contexts as possible, since it is much cheaper to evaluate formulas than to generate state
sequences.

The interface to the execution monitoring part of the EEM consists of three methods:

long monitor_execution(in string formula,
in ExecutionMonitorCallback callback);

LongSeq monitor_execution_group(in StringSeq formulas,
in boolean dependent,
in ExecutionMonitorCallback callback);

void stop_monitor_execution(in long formula_id);

The first two are used to create contexts and start monitoring formulas. The difference between
them is that the the second one takes a set of formulas which are all evaluated in the same context
while the first method creates a context with a single formula in it. The last method is used
to remove either a formula or a context (if it is the last formula in the context then the context
is removed). The monitor execution group method is currently not implemented. The
policy used to create the state sequence is currently based on sampling the fluent generator of each
of the variables in the state every 100 milliseconds. With the current interface it is not possible to
change the sampling rate or to specify the start and end of the monitoring, but a part from testing
it is easy to add.

As soon as a formula is progressed to either true or false a call is made to the callback in
order to notify the creator of the execution monitoring request. After the callback has been made
the formula is removed from the context since it will not be progressed any further. This means
that if a formula should be monitored at all times it has to be added again if it is evaluated to true
or false.

CHAPTER 4. IMPLEMENTING THE EEM USING DYKNOW 13

4.2 Implementing Event monitoring

The IxTeT implementation that we use is called C.R.S. and is made by France Telecom. In order
to use chronicle recognition to recognize event occurrences the event must be expressed in the
chronicle formalism and a suitable stream of primitive events must be generated. Since the chron-
icle formalism does not require the same type of states as the formula progression this is a much
simpler problem. In fact, the EEM can subscribe to each entity trajectory structure that is part of
a chronicle independently of the others. The only requirement is that the samples arrive ordered
by valid time. The reason is that all the information for a specific time-point has to be available
before the temporal network can be updated with this new information. This means that whenever
a new sample arrives with the valid time t the network is propagated up to the time-point t−1 and
then the new information is added. If a sample arrives out of order it will be ignored. To add new
information the EEM checks whether the value of the attribute of the entity structure has changed
compared to the last sample, if it has changed then an event is generated. For example, if a chron-
icle uses the entity structure obj which has the attributes pos and speed then the EEM would
subscribe to the entity trajectory structure for obj. Each time a new sample arrives it would check
if the pos or speed attributes have changed. If the speed attribute of an entity structure with
the name “robot” changes from high to low at time-point t then an event “the speed attribute of
the entity type obj of the instance robot has changed from high to low” is generated at time-point
t. This is the type of events which are used to define chronicles and used as input to the chronicle
recognition engine.

The interface to the event monitoring part of the EEM consists of two methods:

void monitor_event(in string chronicle,
in string chronicle_file,
in EventCallback callback);

void stop_monitor_event(in string event);

The first method is used to starting monitoring an event as defined by the chronicle chronicle
found in the compiled chronicle file chronicle file. As soon as an instance of the chronicle
is detected a call is made to the event callback. The event callback is a function that takes four ar-
guments, the name of the chronicle, the arguments of the chronicle and the interval over which the
chronicle instance was recognized. To stop monitoring an event a call to the stop monitor event
method has to be made. Unlike the execution monitoring formulas the event is not removed when
an instance has been detected but rather it is continuously monitored until explicitly turned off.

Part II

Tutorial

14

Chapter 5

Introduction

This tutorial gives a practical introduction to using the event and execution monitor (EEM) cen-
tered around a concrete ground robot example. The purpose is to show how to monitor events as
well as the execution of a robot in an application. The tutorial is self-contained and should be
enough to get started using the EEM.

Consider the following scenario, which is a continuation of the scenario presented in the
ESGM report [15]. A wheeled ground robot is moving around in an in-door environment looking
for objects to inspect. When it has found an interesting object it should drive there and examine
it. In the ESGM report we described how entity trajectory structures with the current object of
interest could be generated using computational units and sensor interfaces. In this scenario we
will focus on the implementation of an object following behavior which needs to be monitored
and which uses the recognition of events to guide its execution. To simplify the scenario we will
replace the computed trajectory of objects with a primitive one. The ComputeDirection function
will remain to compute the desired driving direction based on the current position of the object of
interest and the position of the robot. The entity trajectory generated by this computational unit
will be feed together with the current driving direction of the robot into two different computa-
tional units in order to calculate the quantitative and qualitative deviation from the desired driving
direction. These functions are called DirectionDeviation and QualitativeDeviation. Their out-
put will be used to do the event and execution monitoring. An overview of the data flow in the
application is shown in Figure 5.1.

ComputeDirection DirectionDeviation

QualitativeDeviation

DrivingDirectionRobotState

QualitativeDeviation
Blob

DrivingDirection

Figure 5.1: An overview of the data flow in the tutorial application. The ellipses are computational
units and the lines are entity trajectory structures labeled with the name of its entity structure type.

All the code in the tutorial is written in C++ and is available in the supplementary file called
eem tutorial.cc.

15

Chapter 6

Getting Started

This chapter describes how to install and run the EEM.

6.1 Installing the EEM

• Check out the MACS code from Gibson.

• Follow the instructions in the README file in the LiU/dyknow directory on how to down-
load the DyKnow binaries (which includes the required C.R.S. binaries and libraries) and
compile the ESGM and EEM.

• Get an activation key for the C.R.S. software used to do implement the chronicle recognition
by following the instructions on the webpage
http://crs.elibel.tm.fr/register/index.mhtml. Install the activation key
by assigning it to the environment variable CRSKEY. If no valid activation key is present
then the EEM will not be able to recognize any chronicle instances. Currently no checks are
made if the key is present so no errors will be caused.

6.2 Running the EEM

To run the EEM you only have to start the program eem. It is configured to start all the servers
which are required by the EEM by default. When the text (EEM) ORB running... is printed
in the terminal the EEM is up and running. The EEM uses the ESGM which will also be started
unless the option --no-fork-esgm is given at the command line.

6.3 Retrieving the EEM

Before the EEM can be used in an application a reference to the actual EEM CORBA server has
to be retrieved. This can be done using the helper function get object from iorserver
which takes a pointer to an IorServerProxy, the name of the server, and a variable to store
the reference in. The following code retrieves the default IorServer and retrieves a reference to the
EEM stored under the name EEM NAME.

Witas::Util::IorServerProxy ior_server;

16

CHAPTER 6. GETTING STARTED 17

Eem_var eem;
get_object_from_iorserver(&ior_server, EEM_NAME, eem);

If the function is successful the variable eem can now be used to call the methods in the EEM
interface.

Chapter 7

Setting up the Scenario

To set up a scenario like this four things needs to be done. First the entity structure types must be
defined. They describe the entities the application can handle. Then sensors and functions must be
made available to the ESGM. This is done by implementing sensor interfaces and computational
units. The last step is to create entity trajectory structures which contain the actual data produced
by sensors and computed by the functions. This tutorial will not go into the details of how this is
done, since this is already described in the ESGM tutorial [15]. Instead we will only show some
of the code that is used.

7.1 Creating the Entity Structure Types

This scenario uses four entity structure types: Blob, RobotState, DrivingDirection, andQualita-
tiveDeviation. Of these only the last one is new. The QualitativeDeviation entity structure type
represents the qualitative deviation of a robot. It has the following attributes:

• left : bool; true iff the robot is deviating to the left relative to the driving direction of the
robot,

• right : bool; true iff the robot is deviating to the right,

• straight : bool; true iff the robot is not deviating but driving in the desired direction.

Like the other entity types their is a wrapper, QualitativeDeviationWrapper, to make
it easy to get and set the attributes of the entity structures.

The actual code to create the entity structure types are:

string blob_type_name("Blob");
string robot_state_type_name("RobotState");
string driving_direction_type_name("DrivingDirection");
string qualitative_deviation_type_name("QualitativeDeviation");
esgm->create_entity_structure_type(blob_type_name.c_str(),

BlobWrapper::type());
esgm->create_entity_structure_type(robot_state_type_name.c_str(),

RobotStateWrapper::type());
esgm->create_entity_structure_type(driving_direction_type_name.c_str(),

DrivingDirectionWrapper::type());
esgm->create_entity_structure_type(qualitative_deviation_type_name.c_str(),

QualitativeDeviationWrapper::type());

18

CHAPTER 7. SETTING UP THE SCENARIO 19

7.2 Creating the Computational Units

The scenario uses three computational units: ComputeDirection,DirectionDeviation, andQual-
itativeDeviation. The computational unit to compute the driving direction of the robot is the same
as in the ESGM scenario. The other two are new and are used to compute the current deviation
from the desired driving direction. The first does a quantitative calculation while the other provides
a qualitative classification of the deviations.

7.2.1 Computing the Deviation From the Desired Driving Direction

To compute the deviation from the desired direction we create a function which takes the cur-
rent robot state and the current desired driving direction as input and compute the absolute dif-
ference between them. Since we reuse the DrivingDirection entity structure which also has a
speed attribute not used we always set it to 0. The actual implementation is available in the files
DrivingDirectionDeviationCU.h and DrivingDirectionDeviationCU.ccwhich
are included as Appendix III.

7.2.2 Computing the Qualitative Deviation From the Desired Driving Direction

The chronicle recognition engine used to do define events needs input in the form of qualitative
primitive events. Therefore we need to transform the numeric deviation into a set of qualitative
categories. This classification is done by the QualitativeDeviation computational unit. The clas-
sification is quite simple and only looks at the difference between the actual driving direction and
the desired direction. If they are almost the same then the robot is driving straight and not de-
viating at all. If the actual driving direction is less than the desired direction then the robot is
deviating to the left, otherwise it is deviating to the right. The actual implementation is available
in the files QualitativeDeviationCU.h and QualitativeDeviationCU.cc which
are included as Appendix III.

7.3 Creating the Entity Trajectory Structures

Since we are not using any sensors in this scenario the last step is to create the actual entity
trajectory structures. Since this is covered in detail in the ESGM report we will only describe
what trajectories are created and what they contain.

First two primitive trajectories with the input to the scenario are created. One with the current
robot state and one with the current blob to be followed. They are called robot state and
current blob. Then a trajectory called driving direction with the desired driving di-
rection computed from the function DrivingDirection is created. Finally two more computed tra-
jectories are constructed from the functions DirectionDeviation and QualitativeDeviation. They
are called driving direction deviation and qualitative deviation. The actual
code is available in Appendix III.

Chapter 8

Monitoring the Object Following
Behavior

Now that we have created the data flow in the application we are ready to describe the object
following behavior and the monitoring of it.

The goal of the behavior is to minimize the deviation from the desired driving direction to the
currently followed object. This means that it will turn the robot towards the object if it detects that
the deviation is too large. If the deviation is within limits then drive towards the object until close
enough, then stop.

With respect to this behavior we would like to monitor two conditions. First of all, at any time
if the deviation is too large then within a few seconds the robot should be turned towards the object.
This should be true whether the object following behavior is executing or not. This can be seen
as a global monitor which makes sure that the object following behavior is invoked and manages
to guide the robot in the right direction within a few seconds. We call this a global monitor since
it is not tied to a particular behavior but monitored at all times. The second condition is that at
all times the object following behavior is running the robot should never be deviating from the
desired direction for more than 500 milliseconds. This means that it should not take more than
500 milliseconds for the behavior to reach an acceptable deviation. If this condition is violated,
then one reason for the failure could be that the robot is driving too fast. Therefore the recovery
action will be to stop the robot in order to be able to safely turn in the desired direction. We call
this a local monitor since it is only active when the object following behavior is active.

8.1 Implementing the Object Following Behavior

The main loop controlling the robot basically checks the current state and decides which behavior
to run. In our simple scenario the choice is only whether to run the object following behavior
or not to do anything. The object following behavior itself checks the deviation from the desired
driving direction, if it is too large (in our case more than 2 degrees) then it turns towards the object.
If the deviation is smaller then it checks the distance to the object. If the distance is larger than 1
meter then it will stop, otherwise drive towards the object with a constant speed of 1 m/s.

To keep track of the current state a class called EemTutorialState is created. It contains
all the variables we are interested in and will also be used in order to implement the callbacks
for reporting monitoring violations and recognized events. The code for the state can be found in
Appendix III.

20

CHAPTER 8. MONITORING THE OBJECT FOLLOWING BEHAVIOR 21

The main loop, which is run as its own thread, also simulates the movement of the objects
and the failures introduced in order to demonstrate the monitoring capability. The function imple-
menting the main loop is called thread main and can be found in Appendix III.

8.2 Adding the Global Monitor

The purpose of the global monitor, which should always be checked, is to make sure that the robot
will start moving towards the current object of interest within a few seconds. This monitor could
for example be violated if the robot does not switch to the object following behavior quick enough
or if the object following behavior fails for some reason. The formula used is:
always(driving direction deviation.dir > 5
→ eventually[0, 3000]driving direction deviation.dir < 5). It says that if the deviation from
the desired driving direction, represented by the attribute dir on the entity trajectory structure
driving direction deviation, is more than 5 degrees then it should be below 5 degrees
within 3 seconds (the timeunit in the interval is milliseconds). To violate this formula the deviation
has to be more than 5 degrees continuously for more than 3 seconds.

To monitor the formula two things are needed. First, a callback has to be created which is
used by the EEM to notify the application that a formula was evaluated either to true or false.
Since this is an always formula, which is true if and only if all states satisfy the condition, this
means that it can never be evaluated to true since we never have the complete state sequence.
Therefore it would be a bug in the formula progressor if it was ever evaluated to true. Second,
the formula and the callback has to be registered with the EEM in order for it to be evaluated.

To create a callback you have to implement the ExecutionMonitorCallback interface
defined in the IDL-file eem callbacks.idl (see Appendix III). This interface defines two
methods, formula violated and formula satisfied, which has to be implemented:

interface ExecutionMonitorCallback
{
void formula_violated(in long formula_id,

in Time begin_time,
in Time end_time);

void formula_satisfied(in long formula_id,
in Time begin_time,
in Time end_time);

};

To simplify the creation of these callbacks a general implementation exists, called EemEmCallback
which takes two functions of two arguments (which is the start and end time of the interval over
which the formula was evaluated) as input. The first function will be called when the formula
is evaluated to false and the second when it is evaluated to true. These functions could for
example be methods on an object, which is what is used in the tutorial. There it is two methods,
violate global monitor and satisfy global monitor, on an EemTutorialState
object. The code for this is:

FormulaFun
gviolated(bind(&EemTutorialState::violate_global_monitor,

state, _1, _2));
FormulaFun
gsatisfied(bind(&EemTutorialState::satisfy_global_monitor,

CHAPTER 8. MONITORING THE OBJECT FOLLOWING BEHAVIOR 22

state, _1, _2));
EemEmCallback global_callback_servant(gviolated, gsatisfied,

state->verbose);
ExecutionMonitorCallback_var
global_monitor_callback = global_callback_servant._this();

Since the monitor is removed when the formula is evaluated to true or false it is important
that the monitor identifier is removed in the callbacks. For example, this is the actual callback
used in the tutorial when the global monitor is violated:

void
EemTutorialState::violate_global_monitor(Time begin, Time end)
{
global_monitor = -1;
speed = 0;

}

The first line resets the global monitor identifier to -1. The second line tells the robot to stop
moving by setting the speed to 0.

The next step is to register the formula and the callback. This is done through calling the
monitor execution method in the EEM interface. The method takes the formula as a string
and a reference to the callback CORBA object as inputs and returns a formula identifier. If the
identifier is -1 then the formula was not added for some reason. Currently there does not exist any
good feedback but instead you have to look what the EEM prints out. The most common error is
that the formula is not syntactically correct. The second most common error is that the variables
used in the formula are not defined in the ESGM. The formula id is used when you want to stop
the monitoring, so remember to store it. In our case the code to start the monitoring is:

state->global_monitor =
state->eem->monitor_execution(formula.c_str(),

global_monitor_callback.in());

Where formula is the string “always ((driving direction deviation.dir > 5) -> (eventually [0,
3000] (driving direction deviation.dir < 5)))”. The state variable is a pointer to the current
EemTutorialState which contains the formula identifier of the global monitor and a refer-
ence to the EEM server. If the variable global monitor is not -1 then the formula is being
monitored. It will be monitored until either it is explicitly stopped or evaluated to true (which
should never happen) or false. This means that the formula has to be registered again if it has
been violated and it should continue to be monitored after the violation has been resolved. This
is done in the main loop where in each iteration it is checked if the global monitor is -1 then it is
added again. This assures that the formula will always be monitored.

To test the monitoring the tutorial application will not invoke the object following behavior the
first time a new object is recognized. After three seconds the formula will be evaluated to false
and the monitor is violated. The violation callback is called and the application sets a flag which
invokes the correct behavior. The monitor should not be violated after that.

8.3 Adding and Removing the Local Monitor

The purpose of the local monitor, which is only checked when the object following behavior
is running, is to make sure the robot never deviates from its desired course for more than a
short period of time. This monitor will be violated if the robot isn’t able to turn in the right

CHAPTER 8. MONITORING THE OBJECT FOLLOWING BEHAVIOR 23

direction fast enough. One reason for this could be that it is driving too fast or the object it
is following is moving too fast. Since the robot can’t control the object it will assume that it
is driving too fast and stop, and then try to steer in the right direction. The formula used is:
always(eventually[0, 500]driving direction deviation.dir < 5). It says that it always the case
that within 500 milliseconds the robot will have a deviation of less than 5 degrees. To violate this
formula the robot must have a deviation of more than 5 degrees continuously for more than 500
milliseconds. This formula could be made more restrictive by removing the interval. If we had
the formula always driving direction deviation.dir < 5 then the robot would not be allowed to
deviate from the course at all. This has two downsides. First, the formula would have to be added
only after the robot has turned and reached the desired direction. Second, the condition is very
likely to be violated even if the execution is going smoothly possibly due to errors in the measure-
ments or sporadic delays in the values which would make them unsynchronized for a short period.
Therefore it is better to have a somewhat forgiving condition which doesn’t react to the slightest
changes.

To monitor the formula we have to create a callback and tell the EEM to start monitoring the
formula, just like we did with the global monitor. This is done with the following code:

FormulaFun
lviolated(bind(&EemTutorialState::violate_local_monitor,

state, _1, _2));
FormulaFun
lsatisfied(bind(&EemTutorialState::satisfy_local_monitor,

state, _1, _2));
EemEmCallback local_callback_servant(lviolated, lsatisfied,

state->verbose);
ExecutionMonitorCallback_var
local_monitor_callback = local_callback_servant._this();

The main difference is that now the formula should be added whenever the object following be-
havior is started and it should be removed whenever the behavior is stopped. To start monitoring
the formula the following code is used:

if (state->follow_object) {
if (not state->following_object) {
state->following_object = true;

if (state->local_monitor == -1) {
state->local_monitor
= state->eem->monitor_execution(formula.c_str(),

local_monitor_callback.in());
}

}
}

Where formula is the string “always (eventually [0,500] (driving direction deviation.dir< 5))”.
The code says that if we should follow the object and we are not currently following the object,
then start monitoring the execution unless it is already started. To monitor the execution the
method monitor execution in the EEM interface should be called.

To stop the monitoring call the stop monitor execution method in the EEM interface.
This is done when the behavior is no longer active. The actual code used in the tutorial is:

if (state->local_monitor != -1) {

CHAPTER 8. MONITORING THE OBJECT FOLLOWING BEHAVIOR 24

state->eem->stop_monitor_execution(state->local_monitor);
state->local_monitor = -1;

}

The code first checks that the local monitor is actually being monitored, then it removes it.
To test the monitoring of the local formula the tutorial application will not turn in the desired

direction the first time the object following behavior is activated. After 500 milliseconds the
formula will be evaluated to false and the monitor is violated. The violation callback is called and
the application sets a flag which prevents the behavior from not turning (this means that there is
no real recovery action associated with this monitor, only a flag that causes it to be triggered). The
monitor should not be violated after that.

Chapter 9

Detecting a Zig-Zag Behavior

One problem which could occur is that the robot is not driving straight towards the object but is
swaying back and forth in a zig-zag like manner. Given that the robot is always driving straight
towards the object often enough (i.e. within 500 milliseconds) during the zig-zag movement it will
not be detected by the monitoring formulas described above since the deviation is small enough
often enough. Since this is an unwanted behavior we would like to detect it. One description of
the situation is where the robot is first deviating to the left, then deviating to the right, and then
deviating to the left again. This means that we would like to recognize the sequence of three
events, deviating left, deviating right and then deviating left. One way of doing it would be to
write a formula that captures the situation. This would be a quite complex formula with several
nested temporal operators since an operator would be needed to capture each state change. The
formula would look something like eventually(left∧ eventually(right∧ eventually left)) and
this would then be satisfied if such a behavior was recognized. To convert it to a monitoring
formula which should be violated if the behavior is detected the formula must be negated. If we
add the extra condition that it should be at most 500 milliseconds between the first and the second
left deviation, then there is no simple formula that would capture this situation since we can not
refer to explicit time-points in the formulas. But, the same information is easily expressed by a
simple temporal network (STN) as shown in Figure 9.1.

left right left
[1, oo) [1, oo)

[1,500]

Figure 9.1: A simple temporal network describing a zig-zag behavior. The nodes represent time-
points when events happen and the arrows represent temporal constraints on the time-points. The
constraint [1,oo) means that it should be at least one timeunit between the events (oo is the same
as infinity).

This type of simple temporal networks can also be expressed in the chronicle formalism. A
chronicle representing the zigzag behavior consists of three parts. The domain definitions, the
attribute definitions and the definition of the chronicle itself. The first part is the domain definition:

domain Boolean = { unknown, true, false }
domain Object = ˜{}

25

CHAPTER 9. DETECTING A ZIG-ZAG BEHAVIOR 26

This defines two domains Boolean which contains three possible values and Object which
can contain any value (∼{}) means everything that is not in the empty set). The second part is the
attribute definitions:

attribute qualitative_deviation.left[?obj]
{ ?obj in Object ; ?value in Boolean }

attribute qualitative_deviation.straight[?obj]
{ ?obj in Object ; ?value in Boolean }

attribute qualitative_deviation.right[?obj]
{ ?obj in Object ; ?value in Boolean }

This defines three attributes representing the three possible qualitative deviations as represented
by the entity trajectory structure qualitative deviation and its three attributes left,
straight, and right. When the EEM finds the attribute a b c.d then it knows that it should
look for the entity trajectory called a b c and its attribute called d. If such an entity trajectory
does not exist then the EEM will fail to register the chronicle. Each attribute has one argument,
which will be the name of the entity structure. For example, if the qualitative deviation
entity trajectory structure contains an entity structure with the name “robot” and the three attribute
value pairs {〈left,false〉, 〈straight,false〉, 〈right,true〉} this would correspond to the at-
tribute qualitative deviation.left[robot] having the value false at the valid time
of the entity structure.

The third part is the actual chronicle definition itself:

chronicle zigzag[?obj]
{
event(qualitative_deviation.left[?obj]:(false, true), t0)
event(qualitative_deviation.right[?obj]:(false, true), t1)
event(qualitative_deviation.left[?obj]:(false, true), t2)

t1-t0 > 0
t2-t1 > 0
t2-t0 < 500

}

This defines the chronicle zigzag which takes one argument which is the object that is found to
have the zigzag behavior. The chronicle consists of three events, one for each of the nodes in the
simple temporal network. Each event represents the change of values in one attribute. The reason
we introduced a three valued boolean domain was to represent the first event, namely the change
of values from unknown to true or false. If we didn’t have this third value then we would
have to wait until the second value change before we could generate the first event (or always
regard the first assignment of an attribute as a change). The first event statement should be read
as: the left attribute of the entity trajectory structure qualitative deviation changes
value from false to true at time-point t0. Then we have three temporal constraints encoding
the arrows in the STN. The timeunit is milliseconds. The complete chronicle can be found in
Append III.

9.1 Compiling the Chronicle
To be able to recognize instances of a chronicle the specification must currently be compiled. To
do this run the chronicle compiler ccrs on the chronicle specification file:

CHAPTER 9. DETECTING A ZIG-ZAG BEHAVIOR 27

> ccrs zigzag.crs

This will generate a file called zigzag.xrs which can be used by the EEM to register the
chronicle.

9.2 Start Recognizing the Chronicle
To start recognizing instances of a chronicle it must be registered with the EEM using the monitor event
method. It takes three arguments, the name of the chronicle, the name of the file with the com-
piled chronicle and a reference to a callback object. The callback is used by the EEM to notify
the application that an instance of the chronicle has been recognized. To create a callback the
EventCallback interface must be implemented. The interface consists of a single method
event detected and is defined in the eem callbacks.idl file:
interface EventCallback
{
void event_detected(in string name,

in StringSeq args,
in Time begin_time,
in Time end_time);

};

The name argument is the name of the chronicle, args is the sequence of arguments to the chron-
icle, and begin time and end time defines the interval over which the chronicle instance took
place. To simplify the creation of a callback a wrapper exists, similar to the one for the execu-
tion monitor callback, called EemEventCallback. It creates a callback from a function which
takes four arguments, the same as the event detected method takes. The code for creating a
callback which calls the method EemTutorialState::event on the object state is:
EventFun event(bind(&EemTutorialState::event, &state, _1, _2, _3, _4));
EemEventCallback event_callback_servant(event, state.verbose);
EventCallback_var event_callback = event_callback_servant._this();

To register the chronicle and start detecting instances call the monitor event method in
the EEM interface:
string zigzag_name("zigzag");
string zigzag_file("/home/frehe/fhwitas/dyknow2/doc/zigzag.xrs");
eem->monitor_event(zigzag_name.c_str(),

zigzag_file.c_str(),
event_callback.in());

Where the first argument is the name of the chronicle, in our case “zigzag”, the second argument
is the filename of the chronicle, and the third argument is a reference to a callback object.

In our scenario the chronicle is registered before the scenario is started in order to detect all
zigzag instances. To test the monitoring of the event the tutorial application will deliberately make
a zigzag movement if the flag zig zag is set.

9.3 Stop Recognizing the Chronicle
When a chronicle has been registered all recognized instances of the chronicle will generate a call
to the event detected method on the callback object. To stop the recognition a call to the
stop monitor eventmethod of the EEMmust be made. The method takes a single argument
which is the name of the chronicle that should no longer be monitored:

CHAPTER 9. DETECTING A ZIG-ZAG BEHAVIOR 28

eem->stop_monitor_event(zigzag_name.c_str());

In our scenario the chronicle is monitored the whole time and is not removed until the robot is
stopped by ctrl-c.

To run the tutorial compile it, start the EEM, and then execute the tutorial binary. The print
outs in the terminal should describe what is expected and what actually happens. This ends this
tutorial.

Part III

Appendices

29

30

/∗∗
∗ @file eem.idl
∗ Definition of the EEM interface.
∗/

#ifndef EEM IDL
#define EEM IDL

#include "logable.idl"
#include "pingable.idl"
#include "statable.idl"
#include "resetable.idl"
#include "memory statable.idl"
#include "eem callbacks.idl"

#pragma prefix "ida.liu.se/witas"

module Witas {
module Idl {
module Dyknow {

interface Eem
: Pingable, Resetable, MemoryStatable, Statable, Logable

{
/∗∗
∗ Monitor the execution of the formula @a formula. If the
∗ formula is evaluated to true or false a call to the
∗ appropriate method in the callback will be made. The id of
∗ the formula is returned. If it is 1 then the formula was
∗ not added properly.
∗/
long monitor execution(in string formula,

in ExecutionMonitorCallback callback);

/∗∗
∗ Monitor the execution of all the formulas @a formulas. If
∗ dependent is true then all formulas are stopped if one
∗ formula is evaluated to false. If a formula is evaluated to
∗ true or false a call to the appropriate method in the
∗ callback will be made. The list of ids of all the formulas
∗ is returned. If an id is 1 then the formula was not added
∗ properly.
∗/
LongSeq monitor execution group(in StringSeq formulas,

in boolean dependent,
in ExecutionMonitorCallback callback);

/∗∗ Stop monitoring the formula @a formula id. ∗/
void stop monitor execution(in long formula id);

31

/∗∗
∗ Try to find instances of an event in the form of a
∗ chronicle @a chronicle. The chronicle is read from the file
∗ with the name @a chronicle file. If an instance of the
∗ event is detected the @a callback will be used to notify
∗ the user about it.
∗/
void monitor event(in string chronicle,

in string chronicle file,
in EventCallback callback);

/∗∗ Stop monitoring the event @a event. ∗/
void stop monitor event(in string event);

};

};
};

};

#endif

32

/∗∗
∗ @file eem callbacks.idl
∗ Definition of the EEM callbacks.
∗/

#ifndef EEM CALLBACKS IDL
#define EEM CALLBACKSI DL

#include "common types.idl"

#pragma prefix "ida.liu.se/witas"

module Witas {
module Idl {
module Dyknow {

interface ExecutionMonitorCallback
{
void formula violated(in long formula id,

in Time begin time,
in Time end time);

void formula satisfied(in long formula id,
in Time begin time,
in Time end time);

};

interface EventCallback
{
void event detected(in string name,

in StringSeq args,
in Time begin time,
in Time end time);

};

};
};

};

#endif

33

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file eem tutorial.cc
∗
∗ The code from the tutorial on the event and execution monitor.
∗
∗ Created by: Fredrik Heintz 2006 09 24
∗/

#include "BlobWrapper.h"
#include "RobotStateWrapper.h"
#include "DrivingDirectionWrapper.h"
#include "QualitativeDeviationWrapper.h"
#include "DrivingDirectionCU.h"
#include "DrivingDirectionDeviationCU.h"
#include "QualitativeDeviationCU.h"
#include "SubCallback.h"
#include "EemTutorialState.h"
#include "eem tutorial opt.h"

#include "dyknowutil/EemEmCallback.h"
#include "dyknowutil/EemEventCallback.h"
#include "dyknowutil/SubscriptionProxy.h"
#include "dyknowutil/idl dyknow types extensions.h"

#include "util/OrbProxy.h"
#include "util/witasgendefs.h"
#include "util/IorServerProxy.h"
#include "util/witasiornamesdefs.h"
#include "util/get object from iorserver.h"
#include "util/idl common types extensions.h"

#include "dyknow2/eemC.h"
#include "dyknow2/esgmC.h"
#include "ace/Signal.h"
#include "ace/Thread Manager.h"

#include <boost/bind.hpp>
#include <iostream>

using std::cout;
using std::cerr;
using std::endl;
using std::flush;
using std::boolalpha;
using std::string;

using boost::bind;

using Witas::Idl::Time;

34

using Witas::Idl::mStringSeq;
using namespace Witas::Util;
using namespace Witas::Dyknow;
using namespace Witas::Idl::Dyknow;

static sig atomic t finished = 0;
extern "C" void sig handler(int sig)
{
if (finished == 1) {
cerr << "Terminating tutorial with signal " << sig << endl;
exit(1);

} else {
if (finished == 1) {
cerr << "2nd try: Terminating tutorial with signal " << sig << endl;
exit(1);

}

cerr << "Shutting down tutorial with signal " << sig << endl;
finished = 1;

}
}

void∗
thread main(void∗ input)
{
cout << "started robot thread" << endl;
EemTutorialState∗ state = static cast<EemTutorialState∗>(input);
assert (state != 0);

// Create a callback servant for the global monitor
FormulaFun gviolated(bind(&EemTutorialState::violate global monitor, state, 1, 2));
FormulaFun gsatisfied(bind(&EemTutorialState::satisfy global monitor, state, 1, 2));
EemEmCallback global callback servant(gviolated, gsatisfied, state >verbose);
ExecutionMonitorCallback var
global monitor callback = global callback servant. this();

// Create a callback servant for the local monitor
FormulaFun lviolated(bind(&EemTutorialState::violate local monitor, state, 1, 2));
FormulaFun lsatisfied(bind(&EemTutorialState::satisfy local monitor, state, 1, 2));
EemEmCallback local callback servant(lviolated, lsatisfied, state >verbose);
ExecutionMonitorCallback var
local monitor callback = local callback servant. this();

while (not finished) {
try {
++state >cycles since move;
if (state >cycles since move > 50) {
state >cycles since move = 0;
state >move object = true;

35

++state >iteration;
switch (state >iteration) {
case 1:
// Global monitor fail
state >zig zag = false;
state >follow object = false;
state >fail to follow object = false;
cout << "NEW ITERATION: follow object should violate the global monitor" << endl;
break;

case 3:
// Local monitor fail
state >zig zag = false;
state >follow object = true;
state >fail to follow object = true;
cout << "NEW ITERATION: follow object should violate the local monitor" << endl;
break;

case 5:
// Zig zag
state >zig zag = true;
state >follow object = true;
state >fail to follow object = false;
cout << "NEW ITERATION: follow object should trigger the zig zag event" << endl;
break;

default:
// Normal
state >zig zag = false;
state >follow object = true;
state >fail to follow object = false;
cout << "NEW ITERATION: no violations or events expected" << endl;

}
}

// Add the global monitor, if it is not added and we have started the scenario
if (state >global monitor == 1 and state >iteration > 0) {
cout << "add global monitor" << endl;
//string formula = ”always ((prev(driving direction.dir) != driving direction.dir) > eventually [0, 3000] (driving direction deviation.dir < 5))”;
string formula = "always ((driving direction deviation.dir > 5) > (eventually [0, 3000] (driving direction deviation.dir < 5)))";
state >global monitor =
state >eem >monitor execution(formula.c str(),

global monitor callback.in());
}

if (state >move object) {
cout << "move object" << endl;
state >following object = false;
state >speed = 0;

if (state >local monitor != 1) {
cout << "remove local monitor" << endl;
state >eem >stop monitor execution(state >local monitor);
state >local monitor = 1;

}
} else {

36

if (state >follow object) {
if (not state >following object) {
cout << "start following the object" << endl;
state >following object = true;

// Add the local monitor for this behavior
if (state >local monitor == 1) {
cout << "add local monitor" << endl;
string formula = "always (eventually [0,500] (driving direction deviation.dir < 5))";
//string formula = ”always (driving direction deviation.dir < 5)”;
state >local monitor
= state >eem >monitor execution(formula.c str(),

local monitor callback.in());
}

}
}

}

if (state >following object) {
if (fabs(state >robot.dir() state >desired dir) > 2.0) {
if (not state >fail to follow object) {
// If the desired direction is different from the current
// driving direction then change the current driving direction
// to the desired direction.
state >robot.dir(state >desired dir);
cout << "New robot direction is " << state >desired dir << endl;

}
} else {
if (state >zig zag) {
static bool zig = true;
double new dir;
if (zig) {
new dir = state >desired dir 60∗drand48();
cout << "Zig: New robot direction is " << new dir << endl;

} else {
new dir = state >desired dir+60∗drand48();
cout << "Zag: New robot direction is " << new dir << endl;

}
zig = not zig;
state >robot.dir(new dir);

}
if (state >distance to object() > 1.0) {
if (state >speed < 0.1) {
cout << "start moving" << endl;
state >speed = 0.5;

}
} else if (state >speed > 0) {
cout << "close to object, stop" << endl;
state >speed = 0;

} else {
//cout << ”stopped close to object” << endl;

}
}

37

}

// Update robot state
state >update robot state();

// Update blob
state >move blob();

} catch (const CORBA::Exception& e) {
cout << "caught CORBA::Exception " << e << endl;

} catch (const std::exception& e) {
cout << "caught std::exception " << e.what() << endl;

} catch (...) {
cout << "caught unknown exception" << endl;

}

usleep(100∗1000);
}

if (state >global monitor != 1) {
cout << "remove global monitor" << endl;
state >eem >stop monitor execution(state >global monitor);
state >global monitor = 1;

}

state >done = true;

cout << "killed the robot thread" << endl;
state >grp id = 1;
return 0;

}

int main(int argc, char∗ argv[])
{
// Initialize the ORB
OrbProxy::init(argc, argv);
OrbProxy∗ orb = OrbProxy::instance();

// Parse the rest of the arguments
optionProcess(&eem tutorialOptions, argc, argv);

try {
// Get parameters from the command line
int verbose = OPT VALUE VERBOSE;
string ior server address(OPT ARG(IORSERVER));
Time sample period = OPT VALUE SAMPLE PERIOD∗TIMEUNITS PER MILLI SECOND;

string esgm name(OPT ARG(ESGM NAME));
if (esgm name == "") {
esgm name = ESGM NAME;

}

38

string eem name(OPT ARG(EEM NAME));
if (eem name == "") {
eem name = EEM NAME;

}

bool reset = false;
if (ENABLED OPT(RESET)) {
reset = true;

}

if (verbose > 0) {
cout << " verbose = " << verbose

<< "\n ior server address = " << ior server address
<< "\n esgm name = " << esgm name
<< "\n eem name = " << eem name
<< "\n sample period = " << sample period
<< "\n reset = " << boolalpha << reset
<< endl;

}

// Register handler of ctrl c and other signals
ACE Sig Set ss;
ss.sig add(SIGINT);
ss.sig add(SIGTERM);
ss.sig add(SIGQUIT);
ss.sig add(SIGHUP);
ACE Sig Set sm;
ACE Sig Action sa(ss, static cast<ACE SignalHandler>(sig handler), sm);

// Retrieve the iorserver
cout << "retrieving the ior server " << ior server address << "... " << flush;
IorServerProxy ior server(ior server address);
cout << "done" << endl;

// Retrieve the ESGM from the iorserver
cout << "retrieving the ESGM " << esgm name << "... " << flush;
Esgm var esgm;
get object from iorserver(&ior server, esgm name, esgm);
cout << "done" << endl;

if (reset) {
esgm >reset();

}

// Retrieve the EEM from the iorserver
cout << "retrieving the EEM " << eem name << "... " << flush;
Eem var eem;
get object from iorserver(&ior server, eem name, eem);
cout << "done" << endl;

39

if (reset) {
eem >reset();

}

// Create the entity structure types
string blob type name("Blob");
string robot state type name("RobotState");
string driving direction type name("DrivingDirection");
string qualitative deviation type name("QualitativeDeviation");

esgm >create entity structure type(blob type name.c str(),
BlobWrapper::type());

esgm >create entity structure type(robot state type name.c str(),
RobotStateWrapper::type());

esgm >create entity structure type(driving direction type name.c str(),
DrivingDirectionWrapper::type());

esgm >create entity structure type(qualitative deviation type name.c str(),
QualitativeDeviationWrapper::type());

// Create a primitive entity trajectory structure for the robot
// sensor
string robot state name("robot state");
cout << "create " << robot state name << " entity trajectory structure... " << flush;
EntityTrajectoryStructure var robot state
= esgm >create primitive entity trajectory structure(robot state name.c str(),

robot state type name.c str());
cout << "done" << endl;

// Create a primitive entity trajectory structure called
// current blob which represents the blob currently being followed
string current blob name("current blob");
cout << "create " << current blob name << " entity trajectory structure... " << flush;
EntityTrajectoryStructure var current blob
= esgm >create primitive entity trajectory structure(current blob name.c str(),

blob type name.c str());
cout << "done" << endl;

// Create an instance of the driving direction comp unit
string driving dir cu name("DrivingDirection");
cout << "create " << driving dir cu name << " comp unit servant... " << flush;
DrivingDirectionCU driving direction cu servant(verbose);
cout << "done" << endl;

cout << "create " << driving dir cu name << " comp unit corba object... " << flush;
CompUnit var driving direction cu = driving direction cu servant. this();
cout << "done" << endl;

// Register the driving direction comp unit
cout << "add the " << driving dir cu name << " comp unit... " << flush;
esgm >add comp unit(driving dir cu name.c str(),

driving direction type name.c str(),

40

mValueSortSeq(ENTITY FRAME TYPE),
driving direction cu.in());

cout << "done" << endl;

// Create a computed entity trajectory structure called
// driving direction which computes the driving direction to the blob
string driving dir name("driving direction");
cout << "create " << driving dir name.c str() << " entity trajectory structure... " << flush;
EntityTrajectoryStructure var driving direction
= esgm >create computed entity trajectory structure(driving dir name.c str(),

driving dir cu name.c str(),
mStringSeq(robot state name,

current blob name));
cout << "done" << endl;

// Create an instance of the driving direction deviation comp unit
string driving dir dev cu name("DrivingDirectionDeviation");
cout << "create " << driving dir dev cu name << " comp unit servant... " << flush;
DrivingDirectionDeviationCU driving direction deviation cu servant(verbose);
cout << "done" << endl;

cout << "create " << driving dir dev cu name << " comp unit corba object... " << flush;
CompUnit var driving direction deviation cu = driving direction deviation cu servant. this();
cout << "done" << endl;

// Register the driving direction comp unit
cout << "add the " << driving dir dev cu name << " comp unit... " << flush;
esgm >add comp unit(driving dir dev cu name.c str(),

driving direction type name.c str(),
mValueSortSeq(ENTITY FRAME TYPE),
driving direction deviation cu.in());

cout << "done" << endl;

// Create a computed entity trajectory structure called
// driving direction deviation which computes the driving
// direction deviation to the blob
string driving dir dev name("driving direction deviation");
cout << "create " << driving dir dev name.c str() << " entity trajectory structure... " << flush;
EntityTrajectoryStructure var driving direction deviation
= esgm >create computed entity trajectory structure(driving dir dev name.c str(),

driving dir dev cu name.c str(),
mStringSeq(robot state name,

driving dir name));
cout << "done" << endl;

// Create an instance of the qualitative deviation comp unit
string qualitative dev cu name("QualitativeDeviation");
cout << "create " << qualitative dev cu name << " comp unit servant... " << flush;
QualitativeDeviationCU qualitative deviation cu servant(verbose);
cout << "done" << endl;

41

cout << "create " << qualitative dev cu name << " comp unit corba object... " << flush;
CompUnit var qualitative deviation cu = qualitative deviation cu servant. this();
cout << "done" << endl;

// Register the driving direction comp unit
cout << "add the " << qualitative dev cu name << " comp unit... " << flush;
esgm >add comp unit(qualitative dev cu name.c str(),

qualitative deviation type name.c str(),
mValueSortSeq(ENTITY FRAME TYPE),
qualitative deviation cu.in());

cout << "done" << endl;

// Create a computed entity trajectory structure called
// qualitativeection deviation which computes the driving
// direction deviation to the blob
string qualitative dev name("qualitative deviation");
cout << "create " << qualitative dev name.c str() << " entity trajectory structure... " << flush;
EntityTrajectoryStructure var qualitative deviation
= esgm >create computed entity trajectory structure(qualitative dev name.c str(),

qualitative dev cu name.c str(),
mStringSeq(robot state name,

driving dir name));
cout << "done" << endl;

{
// Create an object to represent the current state
EemTutorialState state(eem.in(),

robot state.in(),
current blob.in(),
verbose);

cout << "subscribe to the desired driving direction... " << flush;
EFFun dd fun(bind(&EemTutorialState::set desired dir, &state, 1));
SubCallback desired dir callback(dd fun, verbose);
SubscriptionProxy dd sub proxy(driving direction >subscribe(),

mSymbol(driving dir name),
&desired dir callback);

cout << "done" << endl;

cout << "subscribe to the driving direction deviation... " << flush;
EFFun dev fun(bind(&EemTutorialState::set deviation dir, &state, 1));
SubCallback deviation dir callback(dev fun, verbose);
SubscriptionProxy devd sub proxy(driving direction deviation >subscribe(),

mSymbol(driving dir dev name),
&deviation dir callback);

cout << "done" << endl;

cout << "subscribe to the qualitative deviation... " << flush;
EFFun qdev fun(bind(&EemTutorialState::set qualitative deviation, &state, 1));

42

SubCallback qualitative dev callback(qdev fun, verbose);
SubscriptionProxy qdev sub proxy(qualitative deviation >subscribe(),

mSymbol(qualitative dev name),
&qualitative dev callback);

cout << "done" << endl;

// Create a callback servant for the zigzag event
EventFun event(bind(&EemTutorialState::event, &state, 1, 2, 3, 4));
EemEventCallback event callback servant(event, state.verbose);
EventCallback var event callback = event callback servant. this();

// Start detecting zigzag events
string zigzag name("zigzag");
string zigzag file("/home/frehe/fhwitas/dyknow2/doc/zigzag.xrs");
eem >monitor event(zigzag name.c str(), zigzag file.c str(),

event callback.in());

cout << "create robot thread... " << flush;
ACE Thread Manager∗ thr mgr = ACE Thread Manager::instance();
state.grp id = thr mgr >spawn(&thread main, &state);
cout << "done" << endl;

cout << "scenario started" << endl;
while (not state.done) {
ACE Time Value tv(1, 100000);
orb >run(tv);

}
cout << "scenario finished" << endl;

cout << "wait for robot thread to finish... " << flush;
while (state.grp id != 1) {
usleep(200∗1000);

}
cout << "done";

// Stop detecting the zigzag events
eem >stop monitor event(zigzag name.c str());

}

// Destroy the entity trajectory structures created
cout << "destroy " << robot state name << " trajectory... " << flush;
esgm >destroy entity trajectory structure(robot state name.c str());
cout << "done" << endl;

cout << "destroy " << current blob name << " trajectory... " << flush;
esgm >destroy entity trajectory structure(current blob name.c str());
cout << "done" << endl;

43

cout << "destroy " << driving dir name << " trajectory... " << flush;
esgm >destroy entity trajectory structure(driving dir name.c str());
cout << "done" << endl;

cout << "destroy " << driving dir dev name << " trajectory... " << flush;
esgm >destroy entity trajectory structure(driving dir dev name.c str());
cout << "done" << endl;

cout << "destroy " << qualitative dev name << " trajectory... " << flush;
esgm >destroy entity trajectory structure(qualitative dev name.c str());
cout << "done" << endl;

// Remove the computational units
cout << "destroy " << driving dir cu name << " CU... " << flush;
esgm >remove comp unit(driving dir cu name.c str());
cout << "done" << endl;

cout << "destroy " << driving dir dev cu name << " CU... " << flush;
esgm >remove comp unit(driving dir dev cu name.c str());
cout << "done" << endl;

cout << "destroy " << qualitative dev cu name << " CU... " << flush;
esgm >remove comp unit(qualitative dev cu name.c str());
cout << "done" << endl;

// Destroy the entity structure types created
cout << "destroy " << blob type name << " type... " << flush;
esgm >destroy entity structure type(blob type name.c str());
cout << "done" << endl;

cout << "destroy " << robot state type name << " type... " << flush;
esgm >destroy entity structure type(robot state type name.c str());
cout << "done" << endl;

cout << "destroy " << driving direction type name << " type... " << flush;
esgm >destroy entity structure type(driving direction type name.c str());
cout << "done" << endl;

cout << "destroy " << qualitative deviation type name << " type... " << flush;
esgm >destroy entity structure type(qualitative deviation type name.c str());
cout << "done" << endl;

} catch (const CORBA::Exception& e) {
cout << "caught CORBA::Exception " << e << endl;

} catch (const std::exception& e) {
cout << "caught std::exception " << e.what() << endl;

} catch (...) {
cout << "caught unknown exception" << endl;

}

cout << "exit" << endl;
return 0;

44

}

45

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemTutorialState.h
∗ Include file for the class EemTutorialState.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#ifndef EEM TUTORIAL STATE H
#define EEM TUTORIAL STATE H

#include "BlobWrapper.h"
#include "RobotStateWrapper.h"

#include "dyknow2/eemC.h"
#include "dyknow2/entity trajectory structureC.h"

struct EemTutorialState
{
EemTutorialState(Witas::Idl::Dyknow::Eem ptr eem ,

Witas::Idl::Dyknow::EntityTrajectoryStructure ptr robot state ,
Witas::Idl::Dyknow::EntityTrajectoryStructure ptr current blob ,
int verbose = 0);

Witas::Idl::Dyknow::Eem var eem;
Witas::Idl::Dyknow::EntityTrajectoryStructure var robot state;
Witas::Idl::Dyknow::EntityTrajectoryStructure var current blob;

int grp id;
bool done;
int iteration;
int verbose;

bool move object;
bool follow object;
bool fail to follow object;
bool following object;
bool zig zag;
int cycles since move;

Witas::Dyknow::BlobWrapper blob;
Witas::Dyknow::RobotStateWrapper robot;
double desired dir;
double speed;

int global monitor;
int local monitor;

46

double distance to object() const;

void update robot state();
void move blob();

void set robot state(const Witas::Idl::Dyknow::EntityFrame& ef);
void set desired dir(const Witas::Idl::Dyknow::EntityFrame& ef);
void set deviation dir(const Witas::Idl::Dyknow::EntityFrame& ef);
void set qualitative deviation(const Witas::Idl::Dyknow::EntityFrame& ef);

void violate global monitor(Witas::Idl::Time begin, Witas::Idl::Time end);
void satisfy global monitor(Witas::Idl::Time begin, Witas::Idl::Time end);

void violate local monitor(Witas::Idl::Time begin, Witas::Idl::Time end);
void satisfy local monitor(Witas::Idl::Time begin, Witas::Idl::Time end);

void event(const std::string& name, const Witas::Idl::StringSeq& args,
Witas::Idl::Time begin, Witas::Idl::Time end);

};

#endif

47

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemTutorialState.cc
∗ Implementation file for the class EemTutorialState.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#include "EemTutorialState.h"
#include "DrivingDirectionWrapper.h"
#include "QualitativeDeviationWrapper.h"
#include "dyknowutil/idl dyknow types extensions.h"
#include "util/idl common types extensions.h"
#include <iostream>

using std::cout;
using std::endl;
using std::string;
using Witas::Idl::Time;
using Witas::Idl::StringSeq;
using namespace Witas::Dyknow;
using namespace Witas::Idl::Dyknow;

static const double PI = 3.14159265358979323846;
static const double DEG2RAD = PI / 180.0;
static const double RAD2DEG = 180.0 / PI;

EemTutorialState::EemTutorialState(Eem ptr eem ,
EntityTrajectoryStructure ptr robot state ,
EntityTrajectoryStructure ptr current blob ,
int verbose)

: eem(Eem:: duplicate(eem)),
robot state(EntityTrajectoryStructure:: duplicate(robot state)),
current blob(EntityTrajectoryStructure:: duplicate(current blob)),
grp id(1),
done(false),
iteration(0),
verbose(verbose),
move object(false),
follow object(false),
fail to follow object(false),
following object(false),
zig zag(false),
cycles since move(0),
blob("blob", 10, 10, 10),
robot("robot", 0, 0, 0),
desired dir(0),
speed(0),

48

global monitor(1),
local monitor(1)

{
robot state >create at now(robot.name, robot.attributes);
current blob >create at now(blob.name, blob.attributes);

}

double
EemTutorialState::distance to object() const
{
double dx = blob.x() robot.x();
double dy = blob.y() robot.y();
return sqrt(dx∗dx + dy∗dy);

}

void
EemTutorialState::update robot state()
{
robot.x(robot.x() + speed∗cos(robot.dir()∗DEG2RAD));
robot.y(robot.y() + speed∗sin(robot.dir()∗DEG2RAD));
robot state >create at now(robot.name, robot.attributes);
//cout << ”New state for ” << robot << endl;

}

void
EemTutorialState::move blob()
{
if (move object) {
if (robot.x() > blob.x())
blob.x(blob.x()+int(10∗drand48()));

else
blob.x(blob.x() int(10∗drand48()));

if (robot.y() > blob.y())
blob.y(blob.y()+int(10∗drand48()));

else
blob.y(blob.y() int(10∗drand48()));

current blob >create at now(blob.name, blob.attributes);
cout << "Changed current blob to " << blob << endl;
move object = false;

}
}

void
EemTutorialState::set robot state(const EntityFrame& ef)
{
robot = RobotStateWrapper(ef);

}

49

void
EemTutorialState::set desired dir(const EntityFrame& ef)
{
desired dir = DrivingDirectionWrapper(ef).dir();
//cout << ”new desired direction is ” << desired dir << endl;

}

void
EemTutorialState::set deviation dir(const Witas::Idl::Dyknow::EntityFrame& ef)
{
if (verbose > 0) {
double deviation dir = DrivingDirectionWrapper(ef).dir();
cout << "deviation dir = " << deviation dir << endl;

}
}

void
EemTutorialState::set qualitative deviation(const Witas::Idl::Dyknow::EntityFrame& ef)
{
if (verbose > 0) {
QualitativeDeviationWrapper qd(ef);
cout << "qdev: left = " << std::boolalpha << qd.left()

<< "; straight = " << std::boolalpha << qd.straight()
<< "; right = " << std::boolalpha << qd.right() << endl;

}
}

void
EemTutorialState::violate global monitor(Time begin, Time end)
{
cout << "violated global monitor over interval [" << begin

<< ", " << end << "]" << endl;
global monitor = 1;
speed = 0;
follow object = true;

}

void
EemTutorialState::satisfy global monitor(Time begin, Time end)
{
cout << "Error: satisfied global monitor over interval [" << begin

<< ", " << end << "]" << endl;
global monitor = 1;

}

void
EemTutorialState::violate local monitor(Time begin, Time end)
{

50

cout << "violated local monitor over interval [" << begin
<< ", " << end << "]" << endl;

local monitor = 1;
speed = 0;
fail to follow object = false;

}

void
EemTutorialState::satisfy local monitor(Time begin, Time end)
{
cout << "Error: satisfied local monitor over interval [" << begin

<< ", " << end << "]" << endl;
local monitor = 1;

}

void
EemTutorialState::event(const string& name, const StringSeq& args,

Time begin, Time end)
{
cout << "detected event " << name << "[" << args

<< "] over the interval [" << begin
<< ", " << end << "]" << endl;

}

51

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file QualitativeDeviationWrapper.h
∗ Include file for the class QualitativeDeviationWrapper.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#ifndef QUALITATIVE DEVIATION WRAPPER H
#define QUALITATIVE DEVIATION WRAPPER H

#include "dyknow2/entity structureC.h"
#include "dyknowutil/EntityStructureWrapper.h"

namespace Witas {
namespace Dyknow {

class QualitativeDeviationWrapper
: public EntityStructureWrapper

{
public:
QualitativeDeviationWrapper(const std::string& name);
QualitativeDeviationWrapper(const std::string& name,

bool left, bool straight, bool right);
QualitativeDeviationWrapper(const Idl::Dyknow::EntityFrame& ef);

˜QualitativeDeviationWrapper();

void check attributes();

void left(bool val);
bool left() const;

void straight(bool val);
bool straight() const;

void right(bool val);
bool right() const;

static Idl::Dyknow::EntityStructureType type();
};

}
}

#endif

52

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file QualitativeDeviationWrapper.cc
∗ Implementation file for the class QualitativeDeviationWrapper.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#include "QualitativeDeviationWrapper.h"

namespace Witas {
namespace Dyknow {

QualitativeDeviationWrapper::QualitativeDeviationWrapper(const std::string& name)
: EntityStructureWrapper(name)

{
set bool("left"); set bool("straight"); set bool("right");

}

QualitativeDeviationWrapper::QualitativeDeviationWrapper(const std::string& name,
bool left,
bool straight,
bool right)

: EntityStructureWrapper(name)
{
set bool("left", left); set bool("straight", straight); set bool("right", right);

}

QualitativeDeviationWrapper::QualitativeDeviationWrapper(const Idl::Dyknow::EntityFrame& ef)
: EntityStructureWrapper(ef)

{
check attributes();

}

QualitativeDeviationWrapper::˜QualitativeDeviationWrapper() {}

void
QualitativeDeviationWrapper::check attributes()
{
if (not exists attribute("left", Idl::Dyknow::BOOL TYPE)) set bool("left");
if (not exists attribute("straight", Idl::Dyknow::BOOL TYPE)) set bool("straight");
if (not exists attribute("right", Idl::Dyknow::BOOL TYPE)) set bool("right");

}

void QualitativeDeviationWrapper::left(bool val) { set bool("left", val); }

53

bool QualitativeDeviationWrapper::left() const { return get bool("left"); }

void QualitativeDeviationWrapper::straight(bool val) { set bool("straight", val); }
bool QualitativeDeviationWrapper::straight() const { return get bool("straight"); }

void QualitativeDeviationWrapper::right(bool val) { set bool("right", val); }
bool QualitativeDeviationWrapper::right() const { return get bool("right"); }

Idl::Dyknow::EntityStructureType
QualitativeDeviationWrapper::type()
{
static Idl::Dyknow::EntityStructureType qd type;
static bool first = true;
if (first) {
qd type.name = CORBA::string dup("QualitativeDeviationType");
qd type.attributes.length(3);
qd type.attributes[0].name = CORBA::string dup("left");
qd type.attributes[0].type = Idl::Dyknow::BOOL TYPE;
qd type.attributes[1].name = CORBA::string dup("straight");
qd type.attributes[1].type = Idl::Dyknow::BOOL TYPE;
qd type.attributes[2].name = CORBA::string dup("right");
qd type.attributes[2].type = Idl::Dyknow::BOOL TYPE;

first = false;
}
return qd type;

}

}
}

54

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file DrivingDirectionDeviationCU.h
∗
∗ The header file for the driving direction deviation computational
∗ unit used in the MACS tutorial.
∗
∗ Created by: Fredrik Heintz 2006 10 02
∗/

#ifndef DRIVING DIRECTION DEVIATION CU H
#define DRIVING DIRECTION DEVIATION CU H

#include "wcorba/dyknow2/comp unitS.h"

/∗∗ The implementation of the driving direction computational unit. ∗/
class DrivingDirectionDeviationCU
: public virtual POA Witas::Idl::Dyknow::CompUnit

{
public:
DrivingDirectionDeviationCU(int verbose);

virtual Witas::Idl::Dyknow::Sample∗
compute(const Witas::Idl::Dyknow::SampleSeq& inputs, Witas::Idl::Time qtime)
ACE THROW SPEC ((CORBA::SystemException,

Witas::Idl::Dyknow::ValueNotAvailable));

private:
int verbose ;

};

#endif

55

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file DrivingDirectionDeviationCU.cc
∗
∗ The implementation file for the driving direction deviation
∗ computational unit used in the MACS tutorial.
∗
∗ Created by: Fredrik Heintz 2006 10 02
∗/

#include "DrivingDirectionDeviationCU.h"
#include "DrivingDirectionWrapper.h"
#include "RobotStateWrapper.h"

#include "dyknowutil/dyknow type conversion.h"
#include "dyknowutil/idl dyknow types extensions.h"

#include <iostream>

using std::cout;
using std::endl;
using Witas::Idl::Time;
using namespace Witas::Dyknow;
using namespace Witas::Idl::Dyknow;

DrivingDirectionDeviationCU::DrivingDirectionDeviationCU(int verbose)
: verbose (verbose)

{
if (verbose > 1) cout << "DrivingDirectionDeviationCU(" << verbose << ")" << endl;

}

Sample∗
DrivingDirectionDeviationCU::compute(const SampleSeq& inputs, Time qtime)
ACE THROW SPEC ((CORBA::SystemException,

ValueNotAvailable))
{
if (verbose > 1)
cout << "DrivingDirectionDeviationCU::compute(" << inputs << ", " << qtime << ")" << endl;

try {
// input[0] is the robot state and input[1] the driving direction
if (inputs.length() == 2

and inputs[0].vtime >= inputs[1].vtime) {
RobotStateWrapper robot state(get EntityFrame(inputs[0].val));
DrivingDirectionWrapper driving dir(get EntityFrame(inputs[1].val));
Time now = qtime;
// Compute the difference in driving directions, i.e. the
// difference between the desired direction and the actual
// driving direction.
double dir diff = driving dir.dir() robot state.dir();

56

while (dir diff < 180) dir diff+=360;
while (dir diff > 180) dir diff =360;
double dir = fabs(dir diff);
double speed = 0.0;
DrivingDirectionWrapper driving dir dev(std::string(robot state.name), dir, speed);
if (0 < verbose and verbose <= 1)
cout << " DrivingDirectionDeviationCU(" << robot state << "@" << inputs[0].vtime

<< ", " << driving dir << "@" << inputs[1].vtime << ")";
if (verbose > 0) cout << " = " << driving dir dev << endl;
if (verbose > 0)
cout << " vtime diff = " << inputs[0].vtime inputs[1].vtime << endl;

return new mSample(mValue(driving dir dev), inputs[0].vtime, qtime, now);
}

} catch (const CORBA::Exception& e) {
if (not (verbose > 1))
cout << "DrivingDirectionCU::compute(" << inputs << ", " << qtime << ")";

cout << "DrivingDirectionDeviationCU::compute threw " << e << endl;
}
throw ValueNotAvailable();

}

57

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file QualitativeDeviationCU.h
∗
∗ The header file for the qualitative deviation computational unit
∗ used in the MACS tutorial.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#ifndef QUALITATIVE DEVIATION CU H
#define QUALITATIVE DEVIATION CU H

#include "wcorba/dyknow2/comp unitS.h"

/∗∗ The implementation of the qualitative deviation computational unit. ∗/
class QualitativeDeviationCU
: public virtual POA Witas::Idl::Dyknow::CompUnit

{
public:
QualitativeDeviationCU(int verbose);

virtual Witas::Idl::Dyknow::Sample∗
compute(const Witas::Idl::Dyknow::SampleSeq& inputs, Witas::Idl::Time qtime)
ACE THROW SPEC ((CORBA::SystemException,

Witas::Idl::Dyknow::ValueNotAvailable));

private:
int verbose ;

};

#endif

58

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file QualitativeDeviationCU.cc
∗
∗ The implementation file for the qualitative deviation computational
∗ unit used in the MACS tutorial.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#include "QualitativeDeviationCU.h"
#include "DrivingDirectionWrapper.h"
#include "QualitativeDeviationWrapper.h"
#include "RobotStateWrapper.h"

#include "dyknowutil/dyknow type conversion.h"
#include "dyknowutil/idl dyknow types extensions.h"

#include <iostream>

using std::cout;
using std::endl;
using std::flush;
using Witas::Idl::Time;
using namespace Witas::Dyknow;
using namespace Witas::Idl::Dyknow;

QualitativeDeviationCU::QualitativeDeviationCU(int verbose)
: verbose (verbose)

{
if (verbose > 1) cout << "QualitativeDeviationCU(" << verbose << ")" << endl;

}

Sample∗
QualitativeDeviationCU::compute(const SampleSeq& inputs, Time qtime)
ACE THROW SPEC ((CORBA::SystemException,

ValueNotAvailable))
{
if (verbose > 1)
cout << "QualitativeDeviationCU::compute(" << inputs << ", " << qtime << ")" << flush;

try {
// input[0] is the robot state and input[1] the driving direction
if (inputs.length() == 2

and inputs[0].vtime >= inputs[1].vtime) {
RobotStateWrapper robot state(get EntityFrame(inputs[0].val));
DrivingDirectionWrapper driving dir(get EntityFrame(inputs[1].val));
Time now = qtime;

// Compute the deviation

59

double dir diff = driving dir.dir() robot state.dir();
while (dir diff < 180) dir diff+=360;
while (dir diff > 180) dir diff =360;

// Compute the qualitative deviation
bool left = dir diff >= 0.1;
bool right = dir diff <= 0.1;
bool straight = not (left or right);

QualitativeDeviationWrapper qualitative dir(std::string(robot state.name),
left, straight, right);

if (0 < verbose and verbose <= 1)
cout << " QualitativeDeviationCU(" << robot state << "@" << inputs[0].vtime

<< ", " << driving dir << "@" << inputs[1].vtime << ")";
if (verbose > 0) cout << " = " << qualitative dir << endl;
if (verbose > 0)
cout << " vtime diff = " << inputs[0].vtime inputs[1].vtime << endl;

return new mSample(mValue(qualitative dir), inputs[0].vtime, qtime, now);
}

} catch (const CORBA::Exception& e) {
if (not (verbose > 1))
cout << "QualitativeDeviationCU::compute(" << inputs << ", " << qtime << ")";

cout << " threw " << e << endl;
}
throw ValueNotAvailable();

}

60

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemEmCallback.h
∗ Include file for the class EemEmCallback.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#ifndef EEM EM CALLBACK H
#define EEM EM CALLBACK H

#include "dyknow2/eem callbacksS.h"
#include <boost/function.hpp>

typedef boost::function<void (Witas::Idl::Time begin, Witas::Idl::Time end)> FormulaFun;

class EemEmCallback
: public virtual POA Witas::Idl::Dyknow::ExecutionMonitorCallback {

public:
EemEmCallback(const FormulaFun& violated fun,

const FormulaFun& satisfied fun,
int verbose = 0);

virtual void formula violated(CORBA::Long formula id,
Witas::Idl::Time begin time,
Witas::Idl::Time end time)

ACE THROW SPEC ((CORBA::SystemException));

virtual void formula satisfied(CORBA::Long formula id,
Witas::Idl::Time begin time,
Witas::Idl::Time end time)

ACE THROW SPEC ((CORBA::SystemException));

private:
FormulaFun violated fun ;
FormulaFun satisfied fun ;
int verbose ;

};

#endif

61

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemEmCallback.cc
∗ Implementation file for the class EemEmCallback.
∗
∗ Created by: Fredrik Heintz 2006 10 03
∗/

#include "EemEmCallback.h"
#include <iostream>

using std::cout;
using std::endl;
using Witas::Idl::Time;

EemEmCallback::EemEmCallback(const FormulaFun& violated fun,
const FormulaFun& satisfied fun,
int verbose)

: violated fun (violated fun),
satisfied fun (satisfied fun),
verbose (verbose)

{
}

void
EemEmCallback::formula violated(CORBA::Long formula id,

Time begin time,
Time end time)

ACE THROW SPEC ((CORBA::SystemException))
{
if (verbose > 0) cout << "formula " << formula id << " false over [" << begin time

<< ", " << end time << "]" << endl;
violated fun (begin time, end time);

}

void
EemEmCallback::formula satisfied(CORBA::Long formula id,

Time begin time,
Time end time)

ACE THROW SPEC ((CORBA::SystemException))
{
if (verbose > 0) cout << "formula " << formula id << " true over [" << begin time

<< ", " << end time << "]" << endl;
satisfied fun (begin time, end time);

}

62

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemEventCallback.h
∗ Include file for the class EemEventCallback.
∗
∗ Created by: Fredrik Heintz 2006 10 04
∗/

#ifndef EEM EVENT CALLBACK H
#define EEM EVENT CALLBACK H

#include "dyknow2/eem callbacksS.h"
#include <boost/function.hpp>

typedef boost::function<void (const std::string& name,
const Witas::Idl::StringSeq& args,
Witas::Idl::Time start,
Witas::Idl::Time end)> EventFun;

class EemEventCallback
: public virtual POA Witas::Idl::Dyknow::EventCallback {

public:
EemEventCallback(const EventFun& fun, int verbose = 0);

virtual void event detected(const char∗ name,
const Witas::Idl::StringSeq& args,
Witas::Idl::Time begin time,
Witas::Idl::Time end time)

ACE THROW SPEC ((CORBA::SystemException));

private:
EventFun fun ;
int verbose ;

};

#endif

63

/∗ ∗ Mode: C++ ∗ ∗/

/∗∗
∗ @file EemEventCallback.cc
∗ Implementation file for the class EemEventCallback.
∗
∗ Created by: Fredrik Heintz 2006 10 04
∗/

#include "EemEventCallback.h"
#include "dyknowutil/idl dyknow types extensions.h"
#include "util/idl common types extensions.h"
#include <iostream>

using std::cout;
using std::endl;
using Witas::Idl::Time;

EemEventCallback::EemEventCallback(const EventFun& fun, int verbose)
: fun (fun),
verbose (verbose)

{
}

void
EemEventCallback::event detected(const char∗ name,

const Witas::Idl::StringSeq& args,
Time begin time,
Time end time)

ACE THROW SPEC ((CORBA::SystemException))
{
if (verbose > 0) cout << "event " << name << "[" << args

<< "] detected over [" << begin time
<< ", " << end time << "]" << endl;

fun (name, args, begin time, end time);
}

64

domain Boolean = { unknown, true, false }
domain Object = ˜{}

attribute qualitative deviation.left[?obj] { ?obj in Object ; ?value in Boolean }
attribute qualitative deviation.straight[?obj] { ?obj in Object ; ?value in Boolean }
attribute qualitative deviation.right[?obj] { ?obj in Object ; ?value in Boolean }

chronicle zigzag[?obj]
{

event(qualitative deviation.left[?obj]:(false, true), t0)
event(qualitative deviation.right[?obj]:(false, true), t1)
event(qualitative deviation.left[?obj]:(false, true), t2)

t1 t0 > 0
t2 t1 > 0
t2 t0 < 500

}

Bibliography

[1] J. Aguilar, K. Bousson, C. Dousson, M. Ghallab, A. Guasch, R. Milne, C. Nicol, J. Quevedo, and
L. Travé-Massuyès. TIGER: real-time situation assessment of dynamic systems. Intelligent Systems
Engineering, pages 103–124, 1994.

[2] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. Journal
of the ACM, 43(1):116–146, 1996.

[3] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Mathematics and
Artificial Intelliegnce, 22:5–27, 1998.

[4] S. Bibas, M.-O. Cordier, P. Dague, C. Dousson, F. Lévy, and L. Rozé. Alarm driven supervision for
telecommunication networks: I - off-line scenario generation and II - on-line chronicle recognition.
Annals of Telecommuncations, pages 493–508, 1996.

[5] Marcus Bjäreland. Model-based Execution Monitoring. PhD thesis, Linköping Studies in Science and
Technology, Dissertation No 688, 2001.

[6] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[7] Giuseppe De Giacomo, Raymond Reiter, and Mikhail Soutchanski. Execution monitoring of high-
level robot programs. In Principles of Knowledge Representation and Reasoning, pages 453–465,
1998.

[8] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, 1991.

[9] Erich Rome et. al. Development of an affordance-based control architecture. Technical report,
MACS/2/2.2, jun 2006.

[10] Joaquin L. Fernández and Reid G. Simmons. Robust execution monitoring for navigation plans. In
Proceedings of the Conference on Intelligent Robots and Systems (IROS), 1998.

[11] Matthias Fichtner, Axel Grossmann, and Michael Thielscher. Intelligent execution monitoring in
dynamic environments. Fundam. Inf., 57(2-4):371–392, 2003.

[12] D. Fontaine and N. Ramaux. An approach by graph for the recognition of temporal scenarios. IEEE
transactions on System, Man and Cybernetics, 1997.

[13] E. Gat, M. G. Slack, D. P. Miller, and R. J. Firby. Path planning and execution monitoring for a plane-
tary rover. In Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on,
pages 20–25 vol.1, 1990.

[14] Malik Ghallab. On chronicles: Representation, on-line recognition and learning. In Luigia Carlucci
Aiello, Jon Doyle, and Stuart Shapiro, editors, Proceedings of the Fifth International Conference on
Principles of Knowledge Representation and Reasoning, pages 597–607, San Francisco, November 5–
8 1996. Morgan Kaufmann.

65

BIBLIOGRAPHY 66

[15] Fredrik Heintz, Patrick Doherty, Björn Wingman, Piotr Rudol, and Mariusz Wzorek. The entity
structure generation module. Technical report, MACS/4/3.2, sep 2006.

[16] Henry A. Kautz and James F. Allen. Generalized plan recognition. In Tom Kehler and Stan Rosen-
schein, editors, Proceedings of the Fifth National Conference on Artificial Intelligence, Los Altos,
California, 1986. American Association for Artificial Intelligence, Morgan Kaufmann.

[17] Jonas Kvarnström. TALplanner and Other Extensions to Temporal Action Logic. PhD thesis,
Linköping Studies in Science and Technology, Dissertation No 937, 2005.

[18] K. Ben. Lamine and F. Kabanza. Reasoning about robot actions: A model checking approach. In
Advances in Plan-Based Control of Robotic Agents, LNAI, pages 123–139, 2002.

[19] F. Lévy. Recognising scenarios: a study. In Proceedings of the Fifth International Workshop of
Diagnosis, pages 174–178, 1994.

[20] David V. Pynadath and Michael P. Wellman. Accounting for context in plan recognition, with appli-
cation to traffic monitoring. In Besnard, Philippe and Steve Hanks, editors, Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence (UAI’95), pages 472–481, San Francisco, CA,
USA, August 1995. Morgan Kaufmann Publishers.

