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1 Introduction

This document describes the means for assessing and evaluating the value of the planning
system introduced in [1] in the context of the MACS robot control architecture. It will
furthermore describe the experiments that have been made and present their results.

The following section will shortly describe on the one hand the benefits that arise from
utilizing a planner for the overall capability of the system with respect to the affordance
concept and, on the other hand, the beneficial influence of affordances on a planner.
Section 3 will then describe the different scenarios and use cases that have been selected
to demonstrate and evaluate the planning system as part of the affordance architecture.
Section 4 will describe the work that has been conducted at UOS in order to create
the complete planning module and to generate this evaluation deliverable whereas the
reminder of this document will present and discuss the results of the experiments.
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2 Planning with Affordances

2.1 Advantages for the Overall System

Basically, affordances are opportunities the environment offers to an agent and the agent
can act on those opportunities. For merely demonstrating the usability of the affordance
concept in robotic applications one could thus argue that it is sufficient to employ a purely
reactive system that demonstrates its learned understanding of affordances by applying
appropriate actions on environmental stimuli or test objects that afford that specific action.

However, following a line of argument that we have partially already presented in [2],
we are of the opinion that it makes indeed sense to reason about affordances instead of
acting directly upon an affordance percept. This point has as well been picked up by
[3] who explicitly argue that an agent does not merely respond to a directly perceived
stimulus by applying the action that is afforded in that situation. It is not controlled
by its environment. It can rather use the information provided by the affordances of a
situation and reason about them in a goal-directed manner selecting those afforded actions
that will lead to its goal. Speaking in terms of the MACS demonstrator scenario, the robot
can neglect the perceived pushability affordance of one object if it wants to open the door
by putting something on the switch in order to get to the other room.

Such a level of complexity of action control is not possible in a purely reactive system
as the agent would basically only open the door by chance when it selects exactly the
trigger-switch affordance out of its pool of perceived affordances to act upon. In other
words, as soon as the agent is meant to act in a goal-directed way the usage of a planning
system that develops the necessary action sequences becomes inevitable.

We are furthermore of the opinion that it is necessary in the MACS project to integrate
planner-based and thus goal-directed purposeful task execution in order to demonstrate
not only that affordances can be used in a robotic control architecture, but in addition
that it is supportive, meaningful, and advisable to integrate the affordance concept as a
first-class citizen.

For example, an approach in which a robot avoids an obstacle because the robot
perceives the corresponding affordance cannot be differentiated objectively from standard
potential field approaches that have been manifoldly demonstrated in the past. We thus
argue that this demands a focus on what capabilities environmental objects afford for
interaction rather than merely for reaction.

Especially tasks like purposeful object manipulation require a different level of under-
standing by the robot. They thus qualify better for demonstrating deliberation, under-
standing, and usage of affordances within an architecture. If a robot is able to perceive the
functionalities afforded by objects, or in other words the concrete actions it can perform
on them, and if it is able to evaluate, or plan, on that perception and its knowledge, it will
in the end be able to demonstrate robust and successful affordance-based task execution.
For example, the robot will select objects to interact with according to their afforded func-
tionality rather because it recognizes them as belonging to a certain labelled category, i.e.
it will put any liftable object on a switch to open a door instead of explicitly searching for
the one object that is labelled door-opening-weight.

The evaluation of the planning system will thus not deal with reactive tasks like
affordance-based reactive navigation as that has already been shown in the MACS project
in [4]. It will instead focus on higher-level tasks like goal-directed object manipulation.
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2.2 Advantages for the Planning Module

As aforementioned, employing a planning module in the MACS robot control architecture
brings along a very interesting advantage for the planner system itself since it shows a
methodology for the difficult question of operator grounding (see as well [1]). The basic
idea behind this is that a plan normally consists of a sequence of operators; e.g. a sequence
for triggering the switch with an object labelled boxA:

< lift(boxA), carry(boxA, switchRegion), trigger-switch(boxA) >

However, it is not always necessary to actually anchor, or ground, all objects of the plan
in the world. In the example just provided, it actually does not matter if we execute the
planning branch containing the operator trigger-switch(boxA, switchRegion) or another
branch with trigger-switch(boxB , switchRegion).

So sometimes, it is not important with which particular object or tool an action is
being accomplished or, speaking in planning terms, on what environmental object a plan
operator is actually being grounded. So why should the planner care about it? The
necessary plan step is just to open the door by putting any suitable item on the switch
and no one cares which item that actually is. Such a suitable item is, of course, exactly
that environmental object that affords the corresponding action to the agent. So by
formalizing the operators in an affordance-based notion1 we have actually gained the
possibility to formulate an operator to lift anything lif table instead of explicitly lifting
boxA. This makes it possible to ground the same lif t-operator either on boxA or on boxB

or even on cylinder42. It is left to the execution phase of the system to select the next
appropriate object to ground the current plan operator on. So when the robot is meant to
lift something it will select the next object in its environment that affords to be lif table.

1See [1] for the detailed description.
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Figure 1: The MACS demonstrator scenario. Screenshot from MACSim.

3 Evaluation Setup

As an evaluation of the planning module and its mutual benefit with the affordance ar-
chitecture we will present an experiment in which the robot performs what has been
introduced in the last section. It will thus perform a goal-oriented object manipulation
task and use an on-the-fly grounding mechanism for its operators. Since we want to
demonstrate capabilities that are objectively distinguishable from what a merely reactive
system can perform, we chose to use the task of operating the switch to open the door.

In all different experiments, the robot will be located in the left room of the MACS
demonstrator scenario (cf. Fig. 1 and 2). The planner will work either on a predefined
world model or after an exploration phase and will present the necessary operator se-
quence to acquire the goal of the task. The execution module will instantiate the different
operators and will select appropriate environmental objects to ground them based on the
content of the affordance representation repository (see again [1] for the full description
of the work flow).

We define the following tasks for assessing the capability of the system according to
the standards defined in [5]:
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region1_left switchRegion

region2_left doorRegionLeft doorRegionRight

region1_right

Left Room Right Room

Figure 2: World Representation Map of the Planning Module.

3.1 Task 1 - Lift object

Name: PL Lift Category: combined Level: 1

Scene Description:

• The robot is located in region2 left.

• There is exactly one test object in another region that
can be lifted with the crane.

Essential Affordances: Liftability

Task Description: The robot has to drive to the correct region and lift the test
object.

Expected Performance: See description.
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3.2 Task 2 - Lift the liftable object

Name: PL SelectAndLift Category: combined Level: 2

Scene Description:

• The robot is located in region2 left.

• There is at least one test object in another region that
can be lifted with the crane.

• There is at least one test object in another region that
cannot be lifted with the crane.

Essential Affordances: Liftability

Task Description: The robot has to select the (or a) test object that affords
lifting and lift it.

Expected Performance:

• The robot selects the appropriate item and thus
grounds the operator on a correct test object.

• When there are multiple liftable test objects, the robot
may select any of them.
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3.3 Task 3 - Open the door

Name: PL OpenDoor Category: combined Level: 3

Scene Description:

• The robot is located in region2 left.

• There is exactly one test object in another region that
can be used to trigger the door opening switch.

Essential Affordances: Liftability, switch-triggerable

Task Description: The robot has to place the test object on the switch in order
to open the door.

Expected Performance: See description.
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3.4 Task 4 - Open the door with the right test object

Name: PL SelectAndOpen Category: combined Level: 4

Scene Description:

• The robot is located in region2 left.

• There is at least one test object in another region that
can be used to trigger the switch.

• There is at least one test object in another region that
cannot be used to trigger the switch.

Essential Affordances: Liftability, switch-triggerable

Task Description: The robot has to select the appropriate test object to trigger
the switch.

Expected Performance:

• The robot selects the appropriate item and thus
grounds the operator on a correct test object.

• When there are multiple suitable test objects, the
robot may select any of them.
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3.5 Task 5 - Change rooms

Name: PL ChangeRooms Category: combined Level: 5

Scene Description:

• The robot is located in region2 left.

• There are multiple test objects that either can or can-
not be used to trigger the switch.

Essential Affordances: Liftability, switch-triggerable, passable

Task Description: The robot has to get into the other room. Therefore, it has
to select the appropriate test object to trigger the switch
and open the door. Afterwards it has to use the passable-
affordance to drive through the open door into the second
room.

Expected Performance:

• The robot selects the appropriate item to trigger the
switch and thus grounds the operator on a correct test
object.

• When there are multiple suitable test objects, the
robot may select any of them.

• The robot drives to the doorRegionLeft to use the
passable-affordance and to drive through the door.



4 SYSTEM DESCRIPTION AND IMPLEMENTATION 10

4 System Description and Implementation

The system that has been implemented by UOS during the last months consists of the
following modules:

• Planning Module,

• Graphical User Interface for the Planning Module,

• Execution Control Module,

• Affordance detection units,

• Behavior System.

These components will now be described.

4.1 Planning Module

The planning module has been implemented in version 1 as it has been defined in [1]. The
design and implementation of version 2 was, as expected, not possible due to the limited
time constraints. The system is based on a PDDL domain description [6] that is completely
listed in appendix A and explained in detail in [1]. The system uses a slightly customized
version of FF-planner [7]. A plan consits of a sequence of operators that are represented
as structs containing the name of the operator, the label of a connected affordace (if any),
and a parameter list for executing the operator.

Representation of both the world model and the goal state is fully integrated in the GUI
and can be transmitted to the planning system via Corba. For listings of the interfaces,
refer to appendix B. The interfaces and the workflow between all components are based on
the internal technical report of the bilateral meeting between METU-KOVAN and UOS
in Ankara in July 2007.

4.2 Graphical User Interface

The graphical user interface of the planning module has been implemented using the Java
programming language. The system contains the possibility to connect to the different
Corba servers (of execution control and planning module) and to accept connections from
both modules for feedback and communication reasons. The main functionality of the
system lies in the complete integration of modelling tools to generate world models (figure
3) and goal requests (figure 4) for the planning module.

As schematically shown in figure 2, the GUI represents the different regions of the
world. On the right of figure 3 and 4, the symbol list of represented facts and affordances
is given.2 The depicted symbols can be placed by drag & drop in the different regions
and the world model can be transferred via the aforementioned Corba interface to the
planning module.

The representation of the goal state, as depicted in figure 4, works just like the rep-
resentation of the world model. When having completed a goal description, the GUI can

2Please note here that, in contrast to the examples of [1], the demonstration setup of the planner does
not distinguish between items that are liftable and can trigger the switch and those that are as well liftable
but cannot trigger the switch. We deem this as a bearable limitation for a proof of concept.
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Figure 3: Screenshot of the UOS planer GUI. Depicted is the generation of the world
model for the planner.

Figure 4: Screenshot of the UOS planer GUI. Depicted is the generation of the goal state
for the planner.
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Figure 5: Screenshot of the UOS planer GUI. Depicted is a plan that has been generated
by the planning module and is ready to be send to the execution module.

send the different goal conditions to the planner and trigger the planning process. The
planning module will generate a fitting plan and return the result to the GUI.

Figure 5 exemplarily depicts such a plan. The user can then accept the plan and
transmit it to the execution module or discard it and alter goal state or world model
accordingly. The general workflow thus passes through the user interface.

Note here that, for the purpose of this document, the world model is completely hand
modelled. It is, of course no problem to add world facts to the world model from the
general architectire execution control when it perceives an affordance in a region.

4.3 Execution Control Module

The execution control module that has been implemented by UOS is specifically designed
to meet the needs of this deliverable. The module receives plans that consist of operator
sequences. The different operators trigger different execution methods that (if specified)
extract the affordance label from the operator and retrieve the corresponding (as identified
by their label) affordance representation triples (ARTs) from the affordance representation
repository (initially implemented by OFAI). These triples contain in their cue-discriptor
references to the affordance detection units that will detect the affordance (see 4.4). The
execution control module then triggers the necessary modules and executes the behaviors
that are encoded in the behavior descriptor of the detected triple. The actual ARTs that
were used for this document have again been manually generated and again, it would not
change anything from the execution and planning module’s point of view if the needed
representation were learned.

4.4 Affordance Detection Units

The affordance detection units that have been implemented by UOS to support the evalu-
ation of the planning module are able to detect the affordance of a test object to be liftable
to the robot, of the switch to be triggerable, and of the door to allow to drive through.

Both liftability and triggerability affordances are detected by means of surface detection
in 3D laser scans. The implemented system extracts horizontal surfaces (see e.g. [8] or
[9]) by clustering 3D scan points using a variant of the QT clustering algorithm [10] and
selects those of appropriate size and height that correspond to either test objects with a
flat top that can be lifted or the flat top of the switch that can be triggered. Note here
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that we assume, for the purpose of this deliverable, that all test objects with a flat top
are liftable and can trigger the switch while those test objects with a curved top are not
liftable.

The affordance to drive through the open door is based on the robot’s 2D laser data.
The walls are detected using a simple line detection mechanism and the gap in between
that is caused by an open door affords to the robot to drive through.

For the sake of simplicity, these affordance detection units were not integrated into the
perception module of the overall architecture and while these affordance detection units
surely are less complex then the ones developed for the complete architecture they proofed
appropriate for the evaluation of the planning system.

4.5 Behavior System

For the purpose of demonstrating the whole robot in action, we have implemented a
complete set of behaviors both for driving the robot and for controlling the crane. The set
of crane control behaviors has been designed theoretically in a trilateral meeting between
IAIS, OFAI and UOS in St. Augustin in May 2007. UOS has implemented the following
set of behaviors:

DirectGoToPoseBehavior - The behavior gets a target pose, turns the robot on the
spot to face into the right direction, drives to the target position and turns the robot
to its target orientation.

3DScanBehavior - The behavior stops the robot and acquires a 3D scan over the area
of interest as suitable in the MACS demonstrator arena.

ReachBehavior - The behavior gets a target position that should ideally correspond to
the location of a detected liftability affordance, postions the crane (when the position
is in reach) above the corresponding test object, and lowers the crane until a contact
has been established.

PullBehavior - After the ReachBehavior has made contact, the pull behavior turns on
the magnet of the crane and tries to lift the object a bit. It monitors the crane’s
weight sensor to decide if there is a weight attached to the crane or not.

RaiseBehavior - If the PullBehavior has monitored a weight on the crane, the test
object is magnetic, liftable, and attached. The RaiseBehavior then lifts the already
attached object

ReleaseBehavior - If the robot had a weight on its magnet, i.e. if it has lifted something,
and makes contact to another item, e.g. the switch, using the ReachBehavior, the
ReleaseBehavior is triggered that turns off the magnet and brings the crane back to
its default position.

These behaviors are designed in a way that they can trigger themselves in a sequence.
For a complete lift operation on a known location, the robot can thus simply activate the
ReachBehavior and trigger the Pull- and RaiseBehavior afterwards. For putting an object
on the switch, it can likewise use the sequence of reaching and releasing when already
carrying an object.
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All behaviors are designed to detect failure or success and report it back to the execu-
tion control that then can report it back to the GUI to allow for replaning.
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Figure 6: Left: The scenario setup for Task 1. Right: The robot has successfully lifted
the test object.

5 Results

5.1 Task 1 - Lift Object

Listing 1 Plan for Task 1

1: APPROACH-REGION region1 left region2 left leftroom
2: LIFT region1 left

Figure 1 displays the plan that was generated for Task 1. The robot has to drive
to the region of the environment that is known to contain something liftable (See the
scenario picture in figure 6 (left)). After the robot did reach the target area, it retrieved
the affordance representation triple for liftability from the representation repository and
instantiated the 3D-scan-behavior that was specified in the cue descriptor. The robot
scanned the region with the red can in it and recognized the liftability affordance. It then
grounded the lift operator on the red can that affords the liftability. The system hence
performed as expected showing the successful grounding of the lift-operator.

5.2 Task 2 - Lift the liftable object

The scenario with a liftable and a not liftable object is shown in figure 9 (left). The plan
generated for this task does not differ from the one generated for task 1. During the
execution, the robot scans the region and detects only the red object as liftable since only
flat can-tops are being detected by the liftability affordance detection unit (see section
4.4). The robot hence always chooses the red can to lift showing again its performance to
ground the operator on the appropriate object.

5.3 Task 3 - Open the door

Listing 2 shows the plan generated by the planning module for task 3. The robot maps the
lift operator during execution to the affordance label liftable and the trigger-switch opera-
tor to the affordance label switch-triggerable. In both cases it retrieved the corresponding
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Figure 7: Left: The scenario setup for tasks 2 and 4. The red can has a flat magnetic top
and can thus be lifted by the robot. The orange can has a round not magnetizable top
and does not afford liftability. Right: The robot has successfully lifted the correct test
object.

Figure 8: Left: The robot has already lifted the can and has approached the region
with the switch. It scans the region to detect the switch-triggerable affordance. Right:
The robot has successfully just placed the test object on the switch and the door in the
background is opening.
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Listing 2 Plan for Task 3

1: APPROACH-REGION region1 left region2 left leftroom
2: LIFT region1 left
3: CARRY switchRegion region1 left leftroom
4: TRIGGER-SWITCH switchRegion

Figure 9: Left: The robot is facing the opened door and detecting the passable affordance.
Right: The robot drives through the door.

ART from the ARR and instantiated the necessary behavior to detect the cue. In case
of the switch-triggerable ART, the behavior descriptor contains the behavior sequence
reach and release while for the lift operator the sequence of reach, pull, and raise is being
used to ground the operator. Figure 9 shows the robot scanning for the switch-triggerable
affordance (left) and opening the door by acting upon it (right).

5.4 Task 4 - Open the door with the right test object

This task is the combination of tasks 2 and 3. The generated plan is the same as for task
2 and, of course, the robot selected the appropriate object to trigger the switch as in the
lifting case of task 2.

5.5 Task 5 - Change rooms

The most complex task that can be shown in the MACS demonstrator arena is to goal-
directedly open the door in order to get to the other room. The plan that corresponds
to this task makes use of the three affordances liftable, switch-triggerable and passable to
ground the operators lift, trigger-switch and change-room. The complete plan is listed in
listing 3 and in its GUI version in figure 5. The initial world model and the goal state are
those depicted in figures 3 and 4.

The robot successfully executed the plan by selecting the appropriate affordance triples
from the repository and grounding the operators on those test objects that afforded the
desired actions.

To conclude this section and thus the evaluation of the planning module we can sum-
marize that all experiments have shown the expected results. The demonstrated planning
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Listing 3 Plan for Task 5

1: APPROACH-REGION region1 left region2 left leftroom
2: LIFT region1 left
3: CARRY switchRegion region1 left leftroom
4: TRIGGER-SWITCH switchRegion
5: APPROACH-REGION doorRegionLeft switchRegion leftRoom
5: CHANGE-ROOM doorRegionLeft doorRegionRight

system provides a valid approach for an affordance-based architecture and it shows most
promising results on the area of operator grounding. Together with the defined repre-
sentation and workflow of planning and plan execution, the planning module provides
the functionality to elegantly combine the directly perceivable nature of affordances with
goal-directed action selection and execution.

The experiments are also available as videos on:
http://www.informatik.uni-osnabrueck.de/∼cloerken/macs-videos.html
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A Domain Description

( define (domain macs−demonstrator )

( :requirements : s tr ips :typing :equality )

( :types doorRegion switchRegion − r eg i on
switchRoom − room )

( :predicates

( pa s sab l e
? s t ar tReg ion − r eg i on
? targe tReg ion − r eg i on )

( sw i t ch− t r i g g e r ab l e ? reg ion − switchRegion )
( affords−removing−from−switch ? reg ion − switchRegion )

( l i f t a b l e ? reg ion − r eg i on )

( robotAt ? robotRegion − r eg i on )
( inRoom ? reg ion − r eg i on ?room − room )
( hasLi ftedSomething )

)

( : action approach−region

:parameters (? s t ar tReg ion − r eg i on
? targe tReg ion − r eg i on
?room − room)

:precondition
(and

( robotAt ? s t ar tReg ion )
(not ( hasLi ftedSomething ) )
( inRoom ? s t ar tReg ion ?room )
( inRoom ? targe tReg ion ?room )
(not (= ? s t ar tReg ion ? targe tReg ion ) ) )

: e f f e c t
(and

( robotAt ? targe tReg ion )
(not ( robotAt ? s t ar tReg ion ) ) ) )

( : action carry

:parameters (? s t ar tReg ion − r eg i on
? targe tReg ion − r eg i on
?room − room )

:precondition
(and

( robotAt ? s t ar tReg ion )
( hasLi ftedSomething )
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( inRoom ? s t ar tReg ion ?room )
( inRoom ? targe tReg ion ?room )
(not (= ? s t ar tReg ion ? targe tReg ion ) ) )

: e f f e c t
(and

( robotAt ? targe tReg ion )
(not ( robotAt ? s t ar tReg ion ) ) ) )

( : action l i f t

:parameters (? reg ion − r eg i on ?room − room )
:precondition

(and
( robotAt ? reg ion )
( l i f t a b l e ? reg ion )
( inRoom ? reg ion ?room )
(not ( hasLi ftedSomething ) ) )

: e f f e c t
(and

( hasLi ftedSomething )
(not ( l i f t a b l e ? reg ion ) ) ) )

( : action drop

:parameters (? reg ion − r eg i on ?room −room)
:precondition

(and
( robotAt ? reg ion )
( inRoom ? reg ion ?room )
( hasLi ftedSomething ) )

: e f f e c t
(and

(not ( hasLi ftedSomething ) )
( l i f t a b l e ? reg ion ) ) )

( : action trigger−switch

:parameters (?doorRegion ?otherDoorRegion − doorRegion
? switchRegion − switchRegion )

:precondition
(and

( robotAt ? switchRegion )
( hasLi ftedSomething )
( sw i t ch− t r i g g e r ab l e ? switchRegion )
(not (= ?doorRegion ?otherDoorRegion ) ) )

: e f f e c t
(and

( pa s sab l e ?doorRegion ?otherDoorRegion )
( pa s sab l e ?otherDoorRegion ?doorRegion )
(not ( sw i t ch− t r i g g e r ab l e ? switchRegion ) )
( affords−removing−from−switch ? switchRegion )
(not ( hasLi ftedSomething ) ) ) )

( : action remove−from−switch
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:parameters (?doorRegion ?otherDoorRegion − doorRegion
? switchRegion − switchRegion )

:precondition
(and

( robotAt ? switchRegion )
(not (= ?doorRegion ?otherDoorRegion ) )
(not ( hasLi ftedSomething ) )
( affords−removing−from−switch ? switchRegion )
( pa s sab l e ?doorRegion ?otherDoorRegion )
( pa s sab l e ?otherDoorRegion ?doorRegion ) )

: e f f e c t
(and

(not ( pa s sab l e ?doorRegion ?otherDoorRegion ) )
(not ( pa s sab l e ?otherDoorRegion ?doorRegion ) )
( sw i t ch− t r i g g e r ab l e ? switchRegion )
(not ( affords−removing−from−switch ? switchRegion ) )
( hasLi ftedSomething ) ) )

( : action change−room

:parameters (?doorRegion − doorRegion
? targetDoorRegion − doorRegion )

:precondition
(and

( robotAt ?doorRegion )
(not ( hasLi ftedSomething ) )
(not (= ?doorRegion ? targetDoorRegion ) )
( pa s sab l e ?doorRegion ? targetDoorRegion ) )

: e f f e c t
(and

(not ( robotAt ?doorRegion ) )
( robotAt ? targetDoorRegion ) ) )

( : action carry−through

:parameters (?doorRegion − doorRegion
? targetDoorRegion − doorRegion )

:precondition
(and

( robotAt ?doorRegion )
( hasLi ftedSomething )
(not (= ?doorRegion ? targetDoorRegion ) )
( pa s sab l e ?doorRegion ? targetDoorRegion ) )

: e f f e c t
(and

(not ( robotAt ?doorRegion ) )
( robotAt ? targetDoorRegion ) ) )

)
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B Module Interfaces

B.1 IPlanningModule.idl

module Macs
{

module i d l {
i n t e r f a c e IPlanningModule {

s t r u c t StrOperator {
string name ;
string a f fo rdanceLabe l ;
string parameter ;

} ;
typedef sequence<StrOperator> PlanSeq ;
typedef sequence<string> GoalSeq ;

/∗∗ Spec i fy a domain d e s c r i p t i o n (PDDL syntax ) that the
∗ planner w i l l work on . ∗/

void setDomain ( in string szDomain ) ;

/∗∗ Spec i fy a complete world model (PDDL syntax ) that the
∗ planner w i l l work on . ∗/

void setWorldModel ( in string szWorldModel ) ;

/∗∗ Tr iggered by GUI . Wil l c a l l EM executePlan when plan i s
∗ ready and t e l l t h i s to the GUI . ∗/

void plan ( in GoalSeq goa l ) ;

/∗∗ Tr igge r s the p lanner with the cur r ent world model and
∗ goa l . ∗/

void planCurrent ( ) ;

/∗∗ Tr iggered by EC on f a i l u r e . The f a i l I n d e x i n d i c a t e s the
∗ operator that has f a i l e d . I f i t was an a f fo rdance r e l a t ed
∗ operator , the robot w i l l remove the a f f o rdance from that
∗ r eg i on with in i t s world model .
∗
∗ Will c a l l EM executePlan when plan i s ready and t e l l t h i s
∗ to the GUI . ∗/

void r ep lan ( in long f a i l I n d e x ) ;

/∗∗ Resets the world model o f the p lanner to the de f a u l t
∗ s e t t i n g . ∗/

void resetWorldModel ( ) ;

/∗∗ Resets the goa l s t a t e o f the p lanner to an empty goa l
∗ s t a t e . ∗/

void r e s e tGoa lS ta te ( ) ;

/∗∗ Tr iggered by EC on percept o f new a f fo rdance t r i p l e type .
∗ Can be c a l l e d by GUI as we l l .
∗ I f the boolean i s f a l s e , the percept w i l l be reomved from
∗ that r eg i on . ∗/
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long updateAffordancePercept ( in string a f fo rdanceLabe l ,
in string r eg ionLabe l ,
in boolean add ) ;

/∗∗ Cal led f o r v i s u a l i z a t i o n by GUI . Returns a l l a f f o rdance
∗ per c ept s o f the world model . ∗/

string getAf fo rdancePercept s ( ) ;

/∗∗ Cal led by EC when the robot changes i t s r eg i on .
∗ Can be c a l l e d by GUI as we l l . ∗/

boolean updateRobotPos it ion ( in string r eg i onLabe l ) ;

/∗∗ Cal led by the GUI s e r v e r when i t connects and when i t
∗ d i s connec t s . To a l low the planner to connect to the GUI
∗ i t s e l f . ∗/

void connectToServer ( in string c l i e n t , in boolean connect ) ;
} ;

} ;
} ;
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B.2 IGUI.idl

module Macs {
module i d l {

i n t e r f a c e IGUI {
/∗∗ Cal led by the planner i f the plan has changed . ∗/
void setCurrentPlan ( in IPlanningModule : : PlanSeq plan ) ;

/∗∗ Set by EM. Contains the plan− index o f the cu r r en t l y
∗ executed operator . ∗/

void se tExecut ingOperator ( in long index ) ;

/∗∗ Cal led by the planner i f the world model has changed .
∗ Note that the robot pose i s being read from the ESGM. ∗/

updateWorldModel( in string a f fo rdanceLabe l ,
in string r eg ion ,
in Boolean add ) ;

} ;
} ;

} ;



B MODULE INTERFACES 26

B.3 IExecutionControlModule.idl

module Macs
{

module i d l {
i n t e r f a c e IExecutionControlModule {

s t r u c t ART {
string cueDesc r ip to r ;
sho r t behav io rDes c r ip to r ;
string outcomeDescr iptor ;

} ;

/∗∗
∗ This method i s used by the Planner Module to pass a
∗ Plan s t r u c tu r e to the ECM, to be executed .
∗ Current ly t h i s func t i on only supports t o t a l l y ordered
∗ plans .
∗/

void executePlan ( in IPlanningModule : : PlanSeq plan ) ;

/∗∗
∗ This method i s used by the Planner Module to stop
∗ the execut ion o f the cur r ent plan , i t has p r ev i o u s l y
∗ s t a r t ed .
∗/

void stopExecution ( ) ;

/∗∗
∗ This method i s c a l l e d by the Behavior Module
∗ to i n d i c a t e that a problem has occured dur ing the
∗ execut ion o f a behav io r .
∗ Current ly ECM responds to t h i s s i t u a t i o n by stopping the
∗ execut ion o f the cur r ent plan , and in fo rming Planner Module
∗ o f the f a i l u r e to execute the plan
∗/

void behav io rExcept ion ( ) ;

/∗∗ Cal led by the GUI s e r v e r when i t connects and when i t
∗ d i s connec t s . To a l low the planner to connect to the
∗ GUI i t s e l f .
∗/

void connectToServer ( in string c l i e n t , in boolean connect ) ;
} ;

} ;
} ;


